Excellent high-level explanation of this topic. 10/10. Thank you for your hard work!
@underfitted2 жыл бұрын
Glad you liked it!
@limotto94524 ай бұрын
You sounds like a hero of all Machine Learning realm. Thank you very much for the video sir.
@emresdance2 жыл бұрын
You've got yourself a subscriber brother, great edit, clarity.
@underfitted2 жыл бұрын
Thanks for the sub!
@11aniketkumar Жыл бұрын
Wow, your teaching skills are excellent
@underfitted Жыл бұрын
Thanks!
@erfanelmtalab1615 Жыл бұрын
Supreme edit ! can't wait to see your channel grow ...
@srishtigupta5507 Жыл бұрын
One of the most interesting video to learn from. Thanks!
@nedafiroz514 Жыл бұрын
I want to say one thing, As many times I see your videos, i get inspired to work on the suggestion and improve my model. ❤The best explanation ever. Watching over several times
@graysadler40852 жыл бұрын
This is exactly what I’m building! I’m creating variable training sets to see which training set size has best performance.
@underfitted2 жыл бұрын
Sounds great!
@a7med7x710 ай бұрын
I just discovered one of the best channels
@PritishMishra2 жыл бұрын
Awesome Explanation and The Thumbnail is lit 🔥
@ЕгорАбросимов-л2о Жыл бұрын
Great stuff! Looking forward to hearing more insights!
@karlbooklover2 жыл бұрын
implemented early stopping auto-saving best model for os-cnn, great explanation! I love your content
@underfitted2 жыл бұрын
Glad it was helpful!
@whilstblower901 Жыл бұрын
Sir your Explanation is excellent please make Videos on Regularization for Deep learning Parameter norm Penalties, Norm Penalties as Constrained Optimization
@alienm.nunezrivero29962 жыл бұрын
That was awesome! My teacher, my mentor, you are just the person I had the opportunity to learn from the most in my whole carrier. Thank you for sharing stuff like this and also for the time we spent working together in the past. I noticed you are now doing what you love the more... just keep teaching
@underfitted2 жыл бұрын
Yo! What’s up! Thanks for the comment! Love ya, man!
@alwaleedalattas83842 жыл бұрын
Really like the way you explained it, thanks a lot
@underfitted2 жыл бұрын
Glad it was helpful!
@abdullahyaser90732 жыл бұрын
Fantastic explanation 👏
@underfitted2 жыл бұрын
Glad you liked it
@karimmerchaoui9736 Жыл бұрын
Just what I was looking for ! how about doing a full machine learning course and simplify concepts with the same approach you did in this video ?
@underfitted Жыл бұрын
Working on it.
@VinayaWani3 ай бұрын
great video! thanks.
@M1911Original2 жыл бұрын
I wish you could provide a technical walkthrough alongside the theoretical
@ThiagoSilvaOfficial Жыл бұрын
Nice video, thanks
@roshanaryal3102 жыл бұрын
Great explanation as always, Santiago 💯💯🔥
@underfitted2 жыл бұрын
Appreciate it!
@Naeem246011 ай бұрын
Amazingly creative explanation, new sub ❤
@aayushpatil75145 ай бұрын
0:50 isn't this model over fitting to data?
@HistoryUnlocked-fi3er2 ай бұрын
Kind of…
@kozaTG6 ай бұрын
i hate how he tricks you into watching another video and you can't ignore because of how good the one you're currently watching is
@varunahlawat90132 жыл бұрын
OMG superbbbbbbbbbbbbb, today itself I came across this confusion (I've just started ML, today started with linear regression, so it's not always linear ahh satisfaction :))
@underfitted2 жыл бұрын
Glad it was helpful!
@dimasveliz67452 жыл бұрын
nice analogy
@underfitted2 жыл бұрын
Thanks :)
@TheInevitableHulk2 жыл бұрын
You could tie the deceleration of the validation loss to the learn rate after a certain threshold.
@underfitted2 жыл бұрын
Right on
@thomaswijgerse723 Жыл бұрын
Early stopping is kinda frowned upon right? Since it does regularization and training at the same time. I think the preferred methods are L1, L2 and dropout iirc?
@nicholasmarshall5775 Жыл бұрын
Great video, thanks! At 05:33, you mention the requirement of a "performance metric" - isn't this just the loss function the model is being optimized for?
@underfitted Жыл бұрын
It depends. Sometimes you need something business-specific. For example, what’s the impact of the model in real life?
@pandabear_77 Жыл бұрын
Sir, I had a question. What would be difference between num of boost rounds vs early stopping rounds, since both are available as parameters in xgb.train. I am a little lost as to what would be difference between the two ? Any clarification on the same is appreciated.
@stephenpaek91752 жыл бұрын
Amazing content, please keep going Santiago
@underfitted2 жыл бұрын
Thanks, will do!
@shavilyarajput54772 жыл бұрын
As far as i know santiago , epochs are in neural network right how can i use early stopping in ML ? I know it might be a noob question but i didn't really get it.
@underfitted2 жыл бұрын
Any algorithm that relies on an iterative approach can benefit from early stopping. But yes, we primarily use it with neural networks.
@tzvi79892 жыл бұрын
Great video. Guess you're still limited by the input data though - especially in the omics fields
@headshock11112 жыл бұрын
Wait was this supposed to be an allegory for self improvement or what
@vinaykamath6628 Жыл бұрын
Is it just me or does this guy sound like PewDiePie
@StephenGillie2 жыл бұрын
Can an AI be trained to be better at training AI? You're a machine learning expert with a ton of manual work - why not get machine learning to do it for you?