Active Learning. The Secret of Training Models Without Labels.

  Рет қаралды 10,620

Underfitted

Underfitted

Күн бұрын

Пікірлер: 55
@nitishchoudhary5285
@nitishchoudhary5285 22 күн бұрын
really helpful, the step by step dissertation was easy to understand, Prost!
@thecouchman2112
@thecouchman2112 2 жыл бұрын
Really helpful video, thanks. One small thing though, the sound effects on the title screens were a bit loud imo :)
@underfitted
@underfitted 2 жыл бұрын
Noted! Thanks for the feedback!
@underfitted
@underfitted 2 жыл бұрын
GOOD ONE!
@emeebritto
@emeebritto 7 ай бұрын
yaa... >.
@miguelduqueb7065
@miguelduqueb7065 2 жыл бұрын
Nice video! You can also use a similar approach to compare models and stay with the one that performs best. Here is how: A few years ago I was collecting data in the chemistry lab in order to fit some models. Each experiment took 1 day to complete, so I started with a simple factorial design, fitted all models to the initial data set, and then predicted the point of maximum divergence between all models. That point was used as the next experiment and models we refitted thereafter. This procedure was repeated several times. Computing uncertainty in your predictions is similar, but only with one model.
@underfitted
@underfitted 2 жыл бұрын
Thanks for sharing!
@fikriansyahadzaka6647
@fikriansyahadzaka6647 2 жыл бұрын
Nice video! Could you also explain about semi-supervised learning? There are not many videos that clearly explain about the progress so far in semi-supervised learning, even though the topic become more popular nowadays
@sahanakaweraniyagoda9866
@sahanakaweraniyagoda9866 2 жыл бұрын
This is lit 🔥. Love this practical approach to Machine learning. Keep doing the amazing work 👏👏
@underfitted
@underfitted 2 жыл бұрын
Thanks! Much more coming!
@hasanx8317
@hasanx8317 6 ай бұрын
Duplicated records in the data has a significant meaning. It means that this repeatedly appearing record in the past is probably going to repeatedly appear in the future, it a VIP records, and knowing how to handle it well means you succeeded in high percentage of your supposed to do. So having duplicate data should some how eventually make the model very accurate in predicting it's related lable, more accurate than unique records.
@JoaquinRevello
@JoaquinRevello Жыл бұрын
Excellent Video. This channel is going to be huge soon
@tecbrain
@tecbrain 6 ай бұрын
Fantástico vídeo. La verdad es que ahora voy a trabajar el código para entenderlo. Gracias por el trabajo que haces para ayudarnos.
@knutjagersberg381
@knutjagersberg381 2 жыл бұрын
Love it, world class content! Also agree. A thought: Why not start with few shot or zero shot learning before active learning?
@underfitted
@underfitted 2 жыл бұрын
If you have a model capable of zero-shot, absolutely!
@Param3021
@Param3021 2 жыл бұрын
Another nice video! Learned a new concept - *Active Learning*
@underfitted
@underfitted 2 жыл бұрын
Glad to hear that!
@lorenzoleongutierrez7927
@lorenzoleongutierrez7927 2 жыл бұрын
Great explanation, thanks! Do you have some example of labeling services providing this approach?. greetings !
@CarlosBCU
@CarlosBCU 2 жыл бұрын
Hi, maybe a silly question but how you calculate the confidence after step 2?
@underfitted
@underfitted 2 жыл бұрын
Assuming you are using a classification model, for example, that will be the confidence (probability) returned by the model. More specifically, the softmax value corresponding to the highest predicted class.
@CarlosBCU
@CarlosBCU 2 жыл бұрын
@@underfitted many thanks for your answer! What if we are running a regression?
@modakad
@modakad 6 ай бұрын
@@underfitted Answering CarlosBCU's question on confidence : I dont think your answer sufficiently clarifies the approach. Lets take an example. Suppose we have two classes, class 0, class 1. for observation A, softmax vector is [0.92,0.08] and for observation 2 its [0.60,0.40] {remember, Softmax gives a vector of values, which all add up to 1}. Which observation should we pick ? Not obs1. Obs2 is where the model has low confidence - as the model separates its predictions by only a magnitude of 0.2 (abs(0.6-0.4)) and in osb1, the separation is higher.
@modakad
@modakad 6 ай бұрын
@@CarlosBCU I think the answer would be - choose the observations with higher error (RMSE, MSE etc.)
@modakad
@modakad 6 ай бұрын
If you are using sigmoid loss function, then it would be trickier.
@mahendrakumargohil6384
@mahendrakumargohil6384 2 жыл бұрын
Excellent Information 👍👍
@underfitted
@underfitted 2 жыл бұрын
Glad it was helpful!
@erdi749
@erdi749 2 жыл бұрын
I love your videos, nice and extremely informative! Just a quick comment: is it possible not to have those " bommmm!" soun?(: It make impossible to listen your videos in a car or with headphone. Thank you!
@underfitted
@underfitted 2 жыл бұрын
Thinks, Erdi! Yes, if you watch my last few videos, I’ve improved the audio, including removing that particular sound 😏
@maheshBasavaraju
@maheshBasavaraju 2 жыл бұрын
Loved the Idea of smart labelling. very cool
@jayantghadge4027
@jayantghadge4027 Жыл бұрын
This method to me seems a little bit like boosting. I might be wrong though, but boosting is what came to my mind after watching the video.
@fobaogunkeye3551
@fobaogunkeye3551 2 жыл бұрын
Lovely video Santiago! Quick question: How do we label the low confidence data that the model initially had a hard time predicting since we also didn't know what the label was in the first place. How do we know the label/class to use for that low confidence predicted data when we re-train ?
@underfitted
@underfitted 2 жыл бұрын
We will start by labeling some of the data manually. The goal is to seed the process to start generating automatic labels.
@jubakala
@jubakala Жыл бұрын
Thanks! This was exactly what I needed at the moment! (:
@123arskas
@123arskas 2 жыл бұрын
I've some queries. There's no proper practical application of it is it? Since the paper talks about methods proposed along with practical issues. Since your videos are straight to the point and you try to keep it simple, just wanna know if you've found practical implementation of it in Python etc. Do give a link to it in the description. Thank you
@underfitted
@underfitted 2 жыл бұрын
Yeah, I've personally used Active Learning multiple times. It's a very practical way to decide how to label a dataset.
@roshanaryal7786
@roshanaryal7786 2 жыл бұрын
Hi, Santiago! Love your content! Could you please make a video on how to start machine learning as a beginner with some programming experience. I've been doing web dev but want to transit into ML. I will appreciate your response 😊
@underfitted
@underfitted 2 жыл бұрын
It's coming soon!
@Param3021
@Param3021 2 жыл бұрын
1:03 - We need to Build a Model to Label the data we need, to Build a Model 🤯
@underfitted
@underfitted 2 жыл бұрын
Yup :)
@jainamshroff4998
@jainamshroff4998 2 жыл бұрын
A Very good video!
@vidyachandran944
@vidyachandran944 2 жыл бұрын
Great content! Thank you :)
@brunoras
@brunoras 2 жыл бұрын
Super insightfull, I`m using this ideas right now!
@123arskas
@123arskas 2 жыл бұрын
If you've made it public (for smaller scale projects) please give the link to its repo. Thank you
@underfitted
@underfitted 2 жыл бұрын
Wonderful!
@kemalariboga
@kemalariboga 2 жыл бұрын
Great content!
@underfitted
@underfitted 2 жыл бұрын
Thanks!
@kutkut310
@kutkut310 5 ай бұрын
Great Santiago, real data has never been so easy! LoL
@dimasveliz6745
@dimasveliz6745 2 жыл бұрын
dynamic! Liked it more!
@underfitted
@underfitted 2 жыл бұрын
Cool, thanks!
@juan.o.p.
@juan.o.p. 2 жыл бұрын
Very interesting
@underfitted
@underfitted 2 жыл бұрын
Glad you think so!
@sodipepaul9370
@sodipepaul9370 2 жыл бұрын
Wow.
@underfitted
@underfitted 2 жыл бұрын
Wow indeed
@mateeurrehman-l6i
@mateeurrehman-l6i 5 ай бұрын
Love the Content. Could you please make a video about Role of Entropy in this process. I just jumped from another video that had the concept. Video tutorial that i just watch : kzbin.info/www/bejne/bICYm2qFncuEjac I am basically qurious in learning how entropy play its part and how can it be improved by addressing multiple factors
Introduction To Autoencoders In Machine Learning.
13:54
Underfitted
Рет қаралды 13 М.
Should You Stop Splitting Your Data Like This?
5:38
Underfitted
Рет қаралды 5 М.
Vampire SUCKS Human Energy 🧛🏻‍♂️🪫 (ft. @StevenHe )
0:34
Alan Chikin Chow
Рет қаралды 138 МЛН
Caleb Pressley Shows TSA How It’s Done
0:28
Barstool Sports
Рет қаралды 60 МЛН
Маусымашар-2023 / Гала-концерт / АТУ қоштасу
1:27:35
Jaidarman OFFICIAL / JCI
Рет қаралды 390 М.
Война Семей - ВСЕ СЕРИИ, 1 сезон (серии 1-20)
7:40:31
Семейные Сериалы
Рет қаралды 1,6 МЛН
Active (Machine) Learning - Computerphile
6:11
Computerphile
Рет қаралды 116 М.
What is Zero-Shot Learning?
8:55
IBM Technology
Рет қаралды 24 М.
How is data prepared for machine learning?
13:57
AltexSoft
Рет қаралды 72 М.
The Active Learning Method
6:54
Sprouts
Рет қаралды 512 М.
Genius Machine Learning Advice for 10 Minutes Straight
9:46
Data Sensei
Рет қаралды 103 М.
8 Mistakes Holding Your Career Back | Machine Learning
6:57
Underfitted
Рет қаралды 65 М.
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 439 М.
Vampire SUCKS Human Energy 🧛🏻‍♂️🪫 (ft. @StevenHe )
0:34
Alan Chikin Chow
Рет қаралды 138 МЛН