Eigenfunction expansions

  Рет қаралды 13,939

Nathan Kutz

Nathan Kutz

Күн бұрын

Пікірлер: 22
@jimlbeaver
@jimlbeaver 4 жыл бұрын
It was extremely helpful to see the correspondence with the linear algebra side. I haven’t seen them side by side like this. Thanks
@warr2015
@warr2015 Жыл бұрын
Excellent video. Watched for a more in-depth look at EV Expansions for my QM class.
@olivermechling7975
@olivermechling7975 3 жыл бұрын
Hi Nathan, your explanations help out a lot! Very concise presentation, I learned a lot. Thanks!
@miro.s
@miro.s 3 жыл бұрын
Nice example of generalized Gramm-Schmidt orthogonalization in new transformed space expressed in natural basis. Then regarding to that basis we need only to add lamda.
@sunghyunkim3881
@sunghyunkim3881 4 жыл бұрын
20:05, the summation is from -\inf to +\inf since the dummy index represents for the all possible non-trivial sol's in trig.(sin) function
@inothernews
@inothernews 4 жыл бұрын
Thanks for the lecture, it's great. Can I check if the solution to the ODE is correct? Seems like it should be sin/cos of sqrt(lambda)* x (instead of lambda* x). If there is in fact a typo, then the eigenvalues should also be (n pi / l ) ^2, that's the only result that is affected I think.
@miro.s
@miro.s 3 жыл бұрын
Generally and imprecisely, it is possible to write lambda instead of sqrt(lambda), to have simple and pretty form as it can happen throughout all Math, but new lambda is not eigenvalue anymore. And the result should be then eigenvalue=lamda^2
@ludviglundgren7353
@ludviglundgren7353 2 жыл бұрын
@@miro.s thanks for that clarification
@AlirezaSafaee
@AlirezaSafaee 2 жыл бұрын
Apparently, at 22:14 there is a sin function missing in the formula for Wronskian.
@subhrohalder4104
@subhrohalder4104 7 ай бұрын
Excellent video:)
@nikkatalnikov
@nikkatalnikov Жыл бұрын
brilliant explanation
@김유황오리-n7n
@김유황오리-n7n 3 жыл бұрын
Very much helpful ! thank you so much sir👍
@bonbonpony
@bonbonpony 5 ай бұрын
Yeah, that's great, but in order to do all that, we need to have the eigenfunctions and eigenvalues first. For matrices, there's at least an algorithm for that. But how are we supposed to do that with differential operators? :q
@sinahamedi2786
@sinahamedi2786 3 жыл бұрын
You mentioned that using eigenvalues is an easier way of getting Ax=b solution and explained that we should build the sigma expression from right-hand-side to calculate u(x); however, when it comes to the example, you just say the equation looks familiar and the answer is sin(x)+cos(x). If we want to guess the solution at the end, what is the point of using eigen values/functions?
@jamesmarshel1723
@jamesmarshel1723 3 жыл бұрын
He used the eigenvalue problem Ax=cx to find the eigenfunctions. The solution to this problem is well known in this case. Then he uses the normalized eigenfunctions to find the solution to Ax=b by expanding x in terms of the normalized eigenfunctions. In general, this technique is based on the idea of “using a known result “ (i.e. the solution to the eigenvalue problem) or “solving a simpler problem “ (i.e. the eigenvalue problem). See Larson or Poyas on mathematical problem solving. It will change your life.
@bonbonpony
@bonbonpony 5 ай бұрын
Yeah, decomposition with inner products is the obvious part. Finding the eigenfunctions and eigenvalues of a particular differential operator (especially when the coefficients are not constant) is the hard part, and no one seems to be explaining that. Without it, all the rest is pretty much useless.
@msuegri
@msuegri Ай бұрын
In minute 18, shouldn't it be sqrt of lambda in u(x)?
@kyrilo1993
@kyrilo1993 3 жыл бұрын
sorry if i missed something but is the end result the fourier series expansion of the function ?
@shoopinc
@shoopinc 9 ай бұрын
Kinda but not really, Fourier uses complex exponential basis. However the analog of those elements here are the eigenfunctions of the operator itself, solution is written as a sum of the eigenfunctions it is therefore operator dependent what your expansion is.
@hareshsingh8168
@hareshsingh8168 Жыл бұрын
Thanks.
@dbf72829
@dbf72829 4 жыл бұрын
Thanks more qm content please??
@alfredomaussa
@alfredomaussa 3 жыл бұрын
fourier series, fourier transform, laplace transform, green functions... what's missing?
Linear Operators and their Adjoints
34:03
Nathan Kutz
Рет қаралды 21 М.
Sturm-Liouville Theory
30:34
Nathan Kutz
Рет қаралды 23 М.
She made herself an ear of corn from his marmalade candies🌽🌽🌽
00:38
Valja & Maxim Family
Рет қаралды 18 МЛН
小丑女COCO的审判。#天使 #小丑 #超人不会飞
00:53
超人不会飞
Рет қаралды 16 МЛН
My scorpion was taken away from me 😢
00:55
TyphoonFast 5
Рет қаралды 2,7 МЛН
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
Eigenfunction Eigenvalue Problem
10:36
BriTheMathGuy
Рет қаралды 129 М.
Eigenfunctions of a Hermitian operator
13:06
MIT OpenCourseWare
Рет қаралды 45 М.
Multiple-Scale Expansions
22:00
Nathan Kutz
Рет қаралды 4,3 М.
The deeper meaning of matrix transpose
25:41
Mathemaniac
Рет қаралды 400 М.
Eigenfunction Expansions - Partial Differential Equations | Lecture 28
14:17
Eigenvectors and eigenvalues | Chapter 14, Essence of linear algebra
17:16
Green's function for Sturm-Liouville problems
15:23
Nathan Kutz
Рет қаралды 10 М.
Eigenvalues and Eigenvectors
19:01
MIT OpenCourseWare
Рет қаралды 240 М.
The Forced Duffing Oscillator
28:18
Nathan Kutz
Рет қаралды 11 М.
She made herself an ear of corn from his marmalade candies🌽🌽🌽
00:38
Valja & Maxim Family
Рет қаралды 18 МЛН