Eigenvalues and Eigenvectors

  Рет қаралды 240,156

MIT OpenCourseWare

MIT OpenCourseWare

Күн бұрын

Пікірлер: 109
@reneeliu6676
@reneeliu6676 5 жыл бұрын
I wish I could someday bump into Dr. Strang in a supermarket because I want to salute to him. A while back when I was learning algebra in college, I was paying tuition to my own professor (didn't learn anything from him) while learning everything from Dr.Strang's older videos for free. I am very grateful until this day and always will be.
@kiichit1072
@kiichit1072 7 жыл бұрын
Love those lectures that begin with why you need it
@DLSMauu
@DLSMauu 7 жыл бұрын
yeah that is key on why these lectures are so great
@Zaki_1911
@Zaki_1911 4 жыл бұрын
Same
@ianbrewer4843
@ianbrewer4843 2 жыл бұрын
Same
@umutguvercin
@umutguvercin 6 жыл бұрын
The reason why i love linear algebra is you Sir. Enthusiasm to teach is the most important thing a lecturer should have, and i am glad the say that you have enough for thousands of students. :)
@MelodySaleh
@MelodySaleh 6 жыл бұрын
So Damn well said about the greatness of his enthusiasm.
@milkdrinker7
@milkdrinker7 7 жыл бұрын
I just learned more in 10 minutes of you than I've learned in the last 2 weeks of lectures
@zainuddinkhan834
@zainuddinkhan834 7 жыл бұрын
sir i have never seen a better mathematician than you.
@jonathansum9084
@jonathansum9084 7 жыл бұрын
You are right.
@nirbhaythacker6662
@nirbhaythacker6662 7 жыл бұрын
He's good, sure, but there certainly may be more intelligent people.
@prateethnayak8422
@prateethnayak8422 6 жыл бұрын
Intelligence is not a good metric if you cant express it in laymen terms.
@nkhullar1
@nkhullar1 6 жыл бұрын
very good professor, no doubt.
@bonnome2
@bonnome2 6 жыл бұрын
He was 80 when he made this video, pretty phenomenal.
@erion3017
@erion3017 5 жыл бұрын
That was a gold lecture , in 19:00 minutes i learn what my teacher was trying to tell 4 lessons!!!
@georgesadler7830
@georgesadler7830 3 жыл бұрын
These are powerful linear algebra concepts. Linear algebra is a power tool in signal and systems theory, which is a part of the electrical engineering program. When I took this class at the University of Maryland College Park years ago there was a little emphasis on linear algebra. Dr. Strang thank you so much for your contribution to the subject.
@naf7540
@naf7540 6 жыл бұрын
Professor I have an infinite admiration for your clarity and precision of your mind. Your lessons are unequalled. Thank you so much.
@rajvinderkaur1013
@rajvinderkaur1013 8 жыл бұрын
thanks alot sir. i dont know how can i pay gratitude to u.. Thanks to the MIT. great appreciation.
@FloppyDobbys
@FloppyDobbys 7 жыл бұрын
It makes intuitive sense that the Eigen vector remains the same with A^n because we can see A^n as just applying the same transformation n times. Applying the same n times doesn't change the direction of the eigen vectors. For example, If we apply a sheer matrix 3 times to a vector. This doesn't change the eigen vector direction but it will change the magnitude of the sheering because we apply it three times rather than one time so of course the eigen value associated with the composition of all three together must be the same magnitude change if we applied sheer as three separate transformations.
@fisicaematematicacomjean
@fisicaematematicacomjean 6 жыл бұрын
I have never tought about it. Thank you very much for blowing my mind up haha. Math is all about intuition, I think. However, sometimes it's hard to really see through the mathematical expression. Thank you, Tyler.
@SparkyElectricDave
@SparkyElectricDave 5 жыл бұрын
History for generations will remember your good work, just love it.
@mustafasoylemezo5694
@mustafasoylemezo5694 7 жыл бұрын
İ think his explanation is so clear and fluent.İ like his lectures very much and i appreciate him.
@sergiocontreras4k
@sergiocontreras4k Жыл бұрын
It is impressive how to this day this knowledge has not been lost, I mean, KZbin videos are always difficult to watch after years, not this one, it is just as good today, that when it was done
@rutika17
@rutika17 4 жыл бұрын
Sir you are awesome. Can't find a better teacher than u. Thanks a lot for all your efforts.
@zhewang4226
@zhewang4226 8 жыл бұрын
The videos are SO HELPFUL! I had no idea what my professor was talking about during my lecture. Now, I actually understand stuff!!!
@rinrin6454
@rinrin6454 7 жыл бұрын
Hahaha "That's the big equation, it got a box around it."
@TheDavidlloydjones
@TheDavidlloydjones 7 жыл бұрын
This is a brilliant video: he wrote all the stuff on the board before he started the camera. The guy's a freak! This will horrible shock to all the people who think that KZbin is a technology for showing the back of people's heads as they scribble on the blackboard, but so be it. The shock will loosen them up for the other one to come: the guy doesn't talk for ten minutes and then say "without further ado, let's get started." This Strang guy has shown us the etymology of the word "strange."
@Ggnera
@Ggnera 8 жыл бұрын
Prof. Strang is excellent at teaching! The video was very useful. Thank you!
@ANunes06
@ANunes06 2 жыл бұрын
"okay." is a better youtuber intro slogan than 90% of the market.
@davidwright8432
@davidwright8432 7 жыл бұрын
Many thanks, Gil! If all math instruction were as clearly and carefully explained as yours, math would be a lot more popular - because people would realize it was something they could do - like riding a bicycle!
@ritual17
@ritual17 2 жыл бұрын
Thanks Gilbert, my little friend
@goPistons06
@goPistons06 5 жыл бұрын
the introduction is quite elegant and informative, but so simple at the same. such mathematical beauty.
@goPistons06
@goPistons06 5 жыл бұрын
plus such great pedagogical skills. It makes it all come alive. Congrats to the teacher. Cheers from Chile
@kunleolutomilayo4018
@kunleolutomilayo4018 6 жыл бұрын
At 2:55, there I lightened up! Didn't see that coming from previous derivations.
@joefagan9335
@joefagan9335 5 жыл бұрын
My word!!!! Every sentence is precious 💝💝
@hasanshirazi9535
@hasanshirazi9535 7 жыл бұрын
Thanks a lot Professor. Your lecture clarified the eigenvalues and eigenvectors very well.
@ashishneupane1457
@ashishneupane1457 5 жыл бұрын
That's why everybody wants to get into MIT. My professor needs to see your lectures.
@abdallahallahham8586
@abdallahallahham8586 4 жыл бұрын
Dr Strang you are really the best
@richardgraziano428
@richardgraziano428 5 жыл бұрын
Gilbert Strang is absolutely brilliant!
@684tranminhtuan
@684tranminhtuan 2 жыл бұрын
Thank you very much for your kindness to provide a lively and wonderful instruction.
@matinhewing1
@matinhewing1 6 жыл бұрын
Gilbert...a God amongst men...
@c0t556
@c0t556 6 жыл бұрын
Aesthetic Athlete YES
@MrCigarro50
@MrCigarro50 2 жыл бұрын
Best wishes to such super-profesor.
@punstress
@punstress 3 ай бұрын
Great step-by-step logical progression. How do I find previous videos?
@mitocw
@mitocw 3 ай бұрын
Previous video: kzbin.info/www/bejne/pHiulnunlNCFh6M&ab_channel=MITOpenCourseWare View the complete course: ocw.mit.edu/RES-18-009F15 Best wishes on your studies!
@AJ-et3vf
@AJ-et3vf 3 жыл бұрын
Awesome video lecture sir! Very insightful and enlightening!
@joebrinson5040
@joebrinson5040 6 жыл бұрын
When you really want to know then you watch Dr. Strang!
@martinepstein9826
@martinepstein9826 8 жыл бұрын
Oooh so any polynomial expression of A will also have the same eigenvectors, and the'll be of the form P(A)x = P(lambda)x. Nice!
@emanmagdi216
@emanmagdi216 4 жыл бұрын
I actually enjoy your videos so much thanks a lot sir. I wish one day to attend one of your lectures
@nguyenbaodung1603
@nguyenbaodung1603 3 жыл бұрын
God please make this man immortal
@ihbarddx
@ihbarddx 6 жыл бұрын
I love this guy! He's somewhere between a math professor and Mr. Rogers.
@TomSkinner
@TomSkinner 6 жыл бұрын
haha, good characterization . I love this guy.
@andrewl5267
@andrewl5267 7 жыл бұрын
Do you get the same eigenvector multiple times when an eigenvalue has an algebraic multiplicity greater than one?
@lapertica8258
@lapertica8258 6 жыл бұрын
THANK YOU SIR GILBERT
@isaaclara5547
@isaaclara5547 6 жыл бұрын
Amazing lecture. Thanks MIT OCW!
@shivanshuraj7175
@shivanshuraj7175 6 жыл бұрын
You are so good mathmatician.!
@realityandphilosophy4912
@realityandphilosophy4912 6 жыл бұрын
This professor is amazing!
@ivanordonez1183
@ivanordonez1183 8 жыл бұрын
Excellent explanation!! Thank you.
@alexandraboehmke2102
@alexandraboehmke2102 8 жыл бұрын
How does the n at 15:30 relate to time dependence? I don't see how each time step is another equation.
@simonelgarrad
@simonelgarrad 8 жыл бұрын
Alexandra Boehmke yeah what does it mean that all the time dependence is in the exponential??..
@Lolwutdesu9000
@Lolwutdesu9000 8 жыл бұрын
simonel garrad because the t is in the exponential. X is a variable that doesn't depend on time.
@materiasacra
@materiasacra 8 жыл бұрын
Look at the original differential equation: dy/dt=Ay. Think of dt as a finite tiny time step, and rewrite: dy = Ay dt. This says that the change in y over the course of time step t->t+dt is proportional to the duration of the time step and Ay. So the matrix A 'generates' the temporal change by operating on y, for tiny time steps. In physics we call i times A the 'Hamiltonian' of the system. (The i is there for convenience in a wider context.) Now what about the evolution over a longer time interval [0,t]? We split it up into n tiny steps of duration dt = t/n, and apply dy = Ay dt over and over again: y(0+dt) = y(0) + dy = y(t) + Ay(0) dt = (1+Adt) y(0) y(0+2dt) = y(0+dt) + Ay(0+dt)dt = (1+Adt)^2 y(0) y(0+3dt) = y(0+2dt) + Ay(0+2dt)dt = (1+Adt)^3 y(0) .... y(0+ndt) = y(0+(n-1)dt) + Ay(0+(n-1)dt)dt = (1+Adt)^n y(0) That last equation can be written y(t) = (1+At/n)^n y(0). Here you have the n-th power of a (scaled and shifted) matrix A determining the time evolution of y. The formulation in discrete time steps may or may not be the most convenient. If we want, we can take the limit of n -> infinity, thus making the steps dt arbitrarily small while having arbitrarily many of them in inverse proportion. Then we find: y(t) = e^(At) y(0). This is all well and pleasing to the eye, but if you ask: what does an exponential function of a matrix MEAN, we have to revert back to the series expansion of the exponential: y(t) = sum_j (1/j!)(At)^j y(0) which takes us right back to powers of a matrix.
@salrite
@salrite 6 жыл бұрын
Another Great Explanation by Prof.!!!
@yunzheli8784
@yunzheli8784 7 жыл бұрын
I love this man so much!
@gangaprasadyadav2194
@gangaprasadyadav2194 7 жыл бұрын
amazing concept and explanation
@umeng2002
@umeng2002 7 жыл бұрын
Thanks. My Finite Element Analysis professor blasted through eigenvalues and eigenvectors a bit too quickly.
@simonelgarrad
@simonelgarrad 8 жыл бұрын
can I know when is this the next video coming up ?
@mitocw
@mitocw 8 жыл бұрын
+simonel garrad Here is the playlist for this series: kzbin.info/aero/PLMsYJgjgZE8iBpOBZEsS8PuwNBkwMcjix and here is a link to the course website: ocw.mit.edu/RES-18-009F15.
@simonelgarrad
@simonelgarrad 8 жыл бұрын
MIT OpenCourseWare thankyou...so much :')
@idealpotatoes
@idealpotatoes 5 жыл бұрын
This sir is the jesus of algebra
@annakh9543
@annakh9543 6 жыл бұрын
this man is unbelievable
@learninfact9281
@learninfact9281 5 жыл бұрын
Surreal to think like that...
@qtmomo
@qtmomo 6 жыл бұрын
Can someone explain to me how he did work in advance? If you follow 18.06 the chain of thoughts is kinda opposite or did I get something wrong? You first find the eigenvalue then you plug in to find the eigenvector right?
@carultch
@carultch Жыл бұрын
You find the Eigenvalue first. Then you plug it into the diagonals along the given square matrix, and multiply that square matrix with the eigenvector as a vertical matrix. Equate it to the zero vector as a vertical matrix. This will create a system of equations with at least one of them being redundant. Let one of your terms of the Eigenvalue be 1 or any other convenient number, and solve for the remaining terms. Then you'll have your eigenvector corresponding to that eigenvalue. Repeat for the other eigenvalue(s).
@piyushverma2074
@piyushverma2074 6 жыл бұрын
You are great sir..
@tasmiahtunazzina6184
@tasmiahtunazzina6184 6 жыл бұрын
may I know how the solution of the differential equation was y= Ae^*t x?
@carultch
@carultch Жыл бұрын
It's what's called the Ansatz solution, or as I like to call, the prototype solution. It's a solution form we assume, because of experience with the exponential function and its favorable features when it comes to differentiation.
@MS-dr9et
@MS-dr9et 5 жыл бұрын
Ax=lambda x Dats the big equation. It got a box around it ! :)
@ernstmasseant8659
@ernstmasseant8659 7 жыл бұрын
Great explanation
@raminarezou1009
@raminarezou1009 6 жыл бұрын
Easy explanation,
@TheudosGauh2946
@TheudosGauh2946 4 жыл бұрын
Professor Gilbert said, suppose we just found these two eigenvectors with your naked eyes, then...... well, interesting.
@shivanshuraj7175
@shivanshuraj7175 6 жыл бұрын
Thank u professor!
@raphaellungu2424
@raphaellungu2424 6 жыл бұрын
l love your teaching
@siriuss_7
@siriuss_7 6 жыл бұрын
Teachers suck here It was good listening to you
@fernandoraphael95
@fernandoraphael95 6 жыл бұрын
He's the best
@rutika17
@rutika17 4 жыл бұрын
👍👍
@yellow5967
@yellow5967 3 ай бұрын
unc winked at me
@kattasudhir
@kattasudhir 8 жыл бұрын
I wish Prof. Strang would give a intuitive meaning of eigen vector and eigen values before dive deep into math of eigen value and vectors
@omkarchavan2259
@omkarchavan2259 8 жыл бұрын
watch this video
@kattasudhir
@kattasudhir 8 жыл бұрын
Where is the video
@mayurkulkarni755
@mayurkulkarni755 7 жыл бұрын
watch MIT 18.06
@ernstmasseant8659
@ernstmasseant8659 7 жыл бұрын
He says that at the middle of the lecture by saying it is useful for thing that moving over the time .
@joebrinson5040
@joebrinson5040 6 жыл бұрын
That is this video!
@haydenullrich2388
@haydenullrich2388 5 жыл бұрын
(Gilbert)X = (strang)X
@bhaumik09
@bhaumik09 6 жыл бұрын
#Respect
@rafikzorrik752
@rafikzorrik752 2 жыл бұрын
اساعة تراقب العالم
@thomasfranzstockhammer7846
@thomasfranzstockhammer7846 2 жыл бұрын
Lg
@konradmtb
@konradmtb 7 жыл бұрын
Kind of messy and lacks the insight which is critical. Not even close to what is shown by 3blue1brown....
@vp4744
@vp4744 7 жыл бұрын
The difference is due to the preparation of the audience: one is made for MIT students and the other is made for community college students.
@ShauriePvs
@ShauriePvs 5 жыл бұрын
Insight videos like 3blue1brown are impossible to be taught in black board in class.
@salrite
@salrite 6 жыл бұрын
Another Great Explanation by Prof.!!!
Diagonalizing a Matrix
11:37
MIT OpenCourseWare
Рет қаралды 185 М.
21. Eigenvalues and Eigenvectors
51:23
MIT OpenCourseWare
Рет қаралды 660 М.
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН
Motivating Eigenvalues and Eigenvectors with Differential Equations
23:58
The Big Picture of Linear Algebra
15:57
MIT OpenCourseWare
Рет қаралды 992 М.
Oxford Linear Algebra: Eigenvalues and Eigenvectors Explained
26:23
Tom Rocks Maths
Рет қаралды 40 М.
Eigenvectors and eigenvalues | Chapter 14, Essence of linear algebra
17:16
What eigenvalues and eigenvectors mean geometrically
9:09
Dr. Trefor Bazett
Рет қаралды 195 М.
Quantum Mechanics - 4.5 - Eigenvalues and Eigenvectors
20:49
Quantum Mechanics
Рет қаралды 9 М.
Eigenvalues and Eigenvectors, Imaginary and Real
12:42
Physics Videos by Eugene Khutoryansky
Рет қаралды 322 М.