Counting Probabilities with Combinatorics and the Factorial

  Рет қаралды 18,909

Steve Brunton

Steve Brunton

Күн бұрын

Пікірлер: 37
@MrMaxusy
@MrMaxusy 3 ай бұрын
You have a fantastic talent for teaching. Your videos on control theory helped me through my studies and now that I'm finished I still come back just to learn more about all sorts of topics, refreshers, whatever. Keep it up!
@JoseAguilar-fz9mb
@JoseAguilar-fz9mb 3 ай бұрын
Great teacher, great lessons. The only word I can say is: Thanks. 🙏
@charlieawesome5986
@charlieawesome5986 3 ай бұрын
Thank you these videos are absolutely golden ☺.
@panizzutti
@panizzutti 7 күн бұрын
I love this subject so much
@oigxam1
@oigxam1 2 ай бұрын
Excelent Video Doc! Love your work! From Mexico!
@RolandoLopezNieto
@RolandoLopezNieto 3 ай бұрын
Great videos, thank you very much
@ScienceMasterHK
@ScienceMasterHK 3 ай бұрын
Waiting for a complete course Steve! Love it so far!
@Carrymejane
@Carrymejane 3 ай бұрын
My man of the history
@eliegakuba
@eliegakuba 3 ай бұрын
Thanks for these fantastic videos, Steve! Are there any accompanying exercises to help us grasp the concepts even better?
@alarissacamila
@alarissacamila 3 ай бұрын
up up up!! i know we can probably just google it, but it would be nice to have some recommended list or any resources links
@panizzutti
@panizzutti 7 күн бұрын
This is so great thank you holy
@PrntScrpt
@PrntScrpt 3 ай бұрын
Thanks professor
@magtazeum4071
@magtazeum4071 3 ай бұрын
Lovely ❤
@CaravaggioRoma
@CaravaggioRoma 3 ай бұрын
thank you
@alarissacamila
@alarissacamila 3 ай бұрын
I was so focused I got sad when the video ended. Is there any schedule for the next lessons? Im here for it either way, great explanation!!!
@AmirHX
@AmirHX 3 ай бұрын
17:49 What is the probability that I don't have a repeated letter?---> 7.85% ((26)!/(26-4)!)+10^2 / 26^4+10^2
@samsung6980
@samsung6980 3 ай бұрын
I think it should not be added, but multiplied instead.
@Khazloo
@Khazloo 3 ай бұрын
It should be multiplied. ((26)!/(26-4)!)*10^2 / (26^4)*10^2
@Arickjd
@Arickjd 29 күн бұрын
@@Khazloo I thought the same
@arashamirian212
@arashamirian212 2 ай бұрын
awesome
@studybuddy1015
@studybuddy1015 4 ай бұрын
good video
@dostdarali3999
@dostdarali3999 3 ай бұрын
@andrezabona3518
@andrezabona3518 3 ай бұрын
Professor, I have one question... lets say that order doesn't matter in your example of flip coins, i.e, for me ht==th (maybe I am trowing it the same time). Should it change the probability? Maybe now we should have P(A)=2/3 instead of 3/4? I did this experiment on python and it tells me that the probability continues to be 3/4 but I am not getting why!
@TomaszBruxelles
@TomaszBruxelles 3 ай бұрын
Should be 2/3. Imagine you have 3 sticks. One with ends h-h, 2nd t-h and last one t-t. Now you see you were right. Something is wrong in Python code.
@andrezabona3518
@andrezabona3518 3 ай бұрын
@@TomaszBruxelles My code looks like that: import random # Gera um número aleatório: 0 ou 1 a=0 for i in range(10000): r1 = random.randint(0, 1) r2 = random.randint(0, 1) if r1+r2==1 or r1+r2==2: a+=1 print(a*100/10000) I can't see the problem 😢
@anthonybernstein1626
@anthonybernstein1626 2 ай бұрын
It won't be 2/3 because your events don't have the same probability. Think of it this way: let's say we both observe the same coin flips, but I can tell the coins apart while you can't. From my perspective, every event (hh, ht, th, tt) has the same probability (1/4). You will observe hh and tt exactly when I do, so you'll agree that they have the probability 1/4. Then, since the probabilities of all possible events sum up to 1, the remaining event that you observe (ht or th) must occur with the probability 1/2.
@chrlemes
@chrlemes 2 ай бұрын
@@andrezabona3518 Andreza, você não modelou corretamente o experimento. No seu código, r1 tem 50% de probabilidade de ser 0 e 50% de ser 1, assim como r2. Então r1+r2=1 quando r1=0 e r2=1 ou r1=1 e r2=0. Como r1 e r2 são independentes, P(r1∩r2)=P(r1)*P(r2). Daí, P(r1=0∩r2=1)=P(r1=1∩r2=0)=0.5*0.5=0.25. Assim, você terá 50% de probabilidade de ter r1+r2=1. r1+r2=2 ocorrerá quando ambos forem 1, ou seja, P(r1=1∩r2=1)=0.5*.05=0.25. Dessa forma, no seu modelo, P(r1+r2=1 ∪ r1+r2=2) = 0.75.
@nehalahane457
@nehalahane457 2 ай бұрын
How many five cards Run can I deal off top of deck.. What's the meaning of this sentence?
@igorg4129
@igorg4129 3 ай бұрын
But what is the formula for a case "with replacment" when order "does NOT matter"?
@chrlemes
@chrlemes 2 ай бұрын
The k-combination of n elements with replacement equals the k-combination of n+k-1 elements without replacement. It would be (n+k-1)!/k!
@Aminasajeel
@Aminasajeel Ай бұрын
n^r / r!
@phillipisrael4343
@phillipisrael4343 2 ай бұрын
Need practice questions to assimilate this cognitive treasure.
@nightskymusic5163
@nightskymusic5163 3 ай бұрын
Sir upload next videos
@benstallone6784
@benstallone6784 3 ай бұрын
n choices, r samples, without replacement, order matters: n! / (n-r)! n choices, r samples, without replacement, order doesn't matter: n! / ((n-r)!*r!) n choices, r samples, with replacement, order matters: n^r n choices, r samples, with replacement, order doesn't matter: ???????
@benstallone6784
@benstallone6784 3 ай бұрын
never mind. found it n choices, r samples, with replacement, order doesn't matter: (n+r-1)! / (r!*(n-1)!) not obvious at all! you have to translate the problem to r objects being separated by n-1 separators
@benstallone6784
@benstallone6784 3 ай бұрын
n! / ((n-r)!*r!) is always an integer?!? 🤨
@anthonybernstein1626
@anthonybernstein1626 2 ай бұрын
Yes, think of Pascal's triangle. The the k-th number in the n-th row is nCk. Also every number is the sum of the two numbers above it, and the sides are when k=n or k=0, in both cases nCk=1, so every element is an integer.
Set Theory in Probability: Sample Spaces and Events
24:13
Steve Brunton
Рет қаралды 14 М.
A New Theory of Everything Based on Tensors! I had a look.
11:02
Sabine Hossenfelder
Рет қаралды 23 М.
Ozoda - Alamlar (Official Video 2023)
6:22
Ozoda Official
Рет қаралды 10 МЛН
Thank you mommy 😊💝 #shorts
0:24
5-Minute Crafts HOUSE
Рет қаралды 33 МЛН
JISOO - ‘꽃(FLOWER)’ M/V
3:05
BLACKPINK
Рет қаралды 137 МЛН
Overexplaining the binomial distribution
15:18
Primer
Рет қаралды 1,2 МЛН
Gentle Introduction to Probability: Counting Coin Flips and Dice
20:05
The Birthday Problem in Probability: P(A) = 1 - P(not A)
20:21
Steve Brunton
Рет қаралды 11 М.
This Kid Completely Destroyed Me In 30 Seconds
7:58
Anna Cramling
Рет қаралды 1,4 МЛН
Conditional Probabilities
13:11
Steve Brunton
Рет қаралды 9 М.
This title has twenty-nine letters.
13:47
carykh
Рет қаралды 843 М.
Bayes theorem, the geometry of changing beliefs
15:11
3Blue1Brown
Рет қаралды 4,6 МЛН
Cursed Units 2: Curseder Units
20:18
Joseph Newton
Рет қаралды 642 М.
We Fell For The Oldest Lie On The Internet
13:08
Kurzgesagt – In a Nutshell
Рет қаралды 6 МЛН
The Law of Total Probability
10:13
Steve Brunton
Рет қаралды 9 М.
Ozoda - Alamlar (Official Video 2023)
6:22
Ozoda Official
Рет қаралды 10 МЛН