The Birthday Problem in Probability: P(A) = 1 - P(not A)

  Рет қаралды 9,721

Steve Brunton

Steve Brunton

Күн бұрын

Пікірлер
@Shail_Zer01e
@Shail_Zer01e 2 ай бұрын
The formula 1 - (365! / ((365-n)! * 365^n)) can be understood as follows: 365! / (365-n)! is similar to the permutation formula n!/(n-r)!, but it's used here to count the number of ways to arrange n birthdays out of 365 days. 365^n is used as a normalization factor, representing all possible birthday assignments if repetition were allowed. The division (365! / (365-n)!) / 365^n gives the probability of no shared birthdays. Subtracting from 1 gives the probability of at least one shared birthday.
@frankg7048
@frankg7048 Ай бұрын
But isn´t it easier to be understood that the event (for no one shares a birthday) is the number of ways the event(no one shares a birthday) divided by all events which can happen. Therefore the enumerator is "without replacement and order matters" with the formula n!/((n-r)! and for the denominator (all cases, which can happen) just 365^n. It might be important to understand why "without replacement" and "order matters" and here I am not sure, if I fully got the problem. Order matters, because the successor birthday takers are depending to the previous ones, meaning the first take 1st of January, the second cannot take this day anymore etc. Without replacement is clear, because another person cannot take a birthday of another person. For "order matters" I am not sure, because it should not be important if person A takes the 1st of January and person B takes the 2nd January or vice versa, therefore why is enumator not nCr?
@ItzGanked
@ItzGanked 21 күн бұрын
these lectures are so good.
@saraiva407
@saraiva407 2 ай бұрын
17:41 I would use a simple recursive code in python, like: def fun(n): return 1 if (n==0 or n==1) else fun(n-1)*(366-n)/365 and then you can easily use it in a for loop to get the numbers. Of course, if you declare everything inside the for loop, the code is going to be more efficient, but it wouldn't be as simple to implement, and the n value isn't even that big to make such a difference 😅
@Debjit625
@Debjit625 2 ай бұрын
Probabilities for 1- 50 people (n = 1-50) that no one shares birthday with each other 'n=1 : 100.0%', 'n=2 : 99.73%', 'n=3 : 99.18%', 'n=4 : 98.36%', 'n=5 : 97.29%', 'n=6 : 95.95%', 'n=7 : 94.38%', 'n=8 : 92.57%', 'n=9 : 90.54%', 'n=10 : 88.31%', 'n=11 : 85.89%', 'n=12 : 83.3%', 'n=13 : 80.56%', 'n=14 : 77.69%', 'n=15 : 74.71%', 'n=16 : 71.64%', 'n=17 : 68.5%', 'n=18 : 65.31%', 'n=19 : 62.09%', 'n=20 : 58.86%', 'n=21 : 55.63%', 'n=22 : 52.43%', 'n=23 : 49.27%', 'n=24 : 46.17%', 'n=25 : 43.13%', 'n=26 : 40.18%', 'n=27 : 37.31%', 'n=28 : 34.55%', 'n=29 : 31.9%', 'n=30 : 29.37%', 'n=31 : 26.95%', 'n=32 : 24.67%', 'n=33 : 22.5%', 'n=34 : 20.47%', 'n=35 : 18.56%', 'n=36 : 16.78%', 'n=37 : 15.13%', 'n=38 : 13.59%', 'n=39 : 12.18%', 'n=40 : 10.88%', 'n=41 : 9.68%', 'n=42 : 8.6%', 'n=43 : 7.61%', 'n=44 : 6.71%', 'n=45 : 5.9%', 'n=46 : 5.17%', 'n=47 : 4.52%', 'n=48 : 3.94%', 'n=49 : 3.42%', 'n=50 : 2.96%'
@Jibs-HappyDesigns-990
@Jibs-HappyDesigns-990 2 ай бұрын
yup! love it! thanks 4 Teach'n! just the Professionalism U bring to your Lectures, inspires! thanks!
@MrKeats-bm9dh
@MrKeats-bm9dh 2 ай бұрын
Love from India, Sir
@user-vg6kh1bj5i
@user-vg6kh1bj5i 8 күн бұрын
When calculating the number of unique b-days it would seem to me that the order of the b-days does not matter so the formula nCr would be more appropriate. So, why not use nCr? BTW thanks for the great explanations in this video.
@gilofe5500
@gilofe5500 Ай бұрын
Could you make a video about liquid time-constant neural networks and closed-form continuous-time neural networks?
@viddeshk8020
@viddeshk8020 2 ай бұрын
What we can do in computational is that we can create a pseudo random number for data generation or take a dataset from kaggle use pandas dataframe to do simple birthday check based on columns
@muneerghure2933
@muneerghure2933 2 ай бұрын
That was a hilarious statement at 19:38.
@Aikman94
@Aikman94 2 ай бұрын
I am a Valentine's Day conception...
@ljdhhugbfvdhb
@ljdhhugbfvdhb 2 ай бұрын
Greetings from Poland, Professor
@RichardGreen-u2s
@RichardGreen-u2s 9 күн бұрын
Formula for sum of sequence is actually n/2(n+1). Not that it matters for the video.
@michaelseverance341
@michaelseverance341 2 ай бұрын
Dude… are you writing backwards the whole time? How did you do this?
@NateROCKS112
@NateROCKS112 2 ай бұрын
Flipping the video in post, most likely.
@juanjofernandez3518
@juanjofernandez3518 2 ай бұрын
🎉🎉🎉
@arashamirian212
@arashamirian212 24 күн бұрын
fine
@viddeshk8020
@viddeshk8020 2 ай бұрын
1-p(no share) is kind of like there is still one person with one birthday
@YaofuZhou
@YaofuZhou 2 ай бұрын
Plot twist - Do not forget leap year.
@muhammedyasir2103
@muhammedyasir2103 Күн бұрын
I think Steve is left handed but since he is flipping the video to write on glass, he is shown right handed in these videos.. but in reality he is left handed. just an observation..
@bill_lumbergh
@bill_lumbergh 2 ай бұрын
Birthdays are participation trophies
@dawudshekey2422
@dawudshekey2422 Ай бұрын
n = 23 days_in_year = 365 prob_no_shared = 1.0 for i in range(n): prob_no_shared *= (days_in_year - i) / days_in_year prob_shared = 1 - prob_no_shared print(prob_shared)
Set Theory in Probability: Sample Spaces and Events
24:13
Steve Brunton
Рет қаралды 11 М.
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН
She made herself an ear of corn from his marmalade candies🌽🌽🌽
00:38
Valja & Maxim Family
Рет қаралды 18 МЛН
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
Bayes theorem, the geometry of changing beliefs
15:11
3Blue1Brown
Рет қаралды 4,6 МЛН
Math News: The Fish Bone Conjecture has been deboned!!
23:06
Dr. Trefor Bazett
Рет қаралды 178 М.
Gentle Introduction to Probability: Counting Coin Flips and Dice
20:05
On These Questions, Smarter People Do Worse
14:35
Veritasium
Рет қаралды 4,6 МЛН
2024's Biggest Breakthroughs in Math
15:13
Quanta Magazine
Рет қаралды 484 М.
Counting Probabilities with Combinatorics and the Factorial
17:50
Steve Brunton
Рет қаралды 16 М.
The Magic of Induction - Numberphile
18:05
Numberphile
Рет қаралды 159 М.
The Key Equation Behind Probability
26:24
Artem Kirsanov
Рет қаралды 158 М.
Independence in Probability
13:00
Steve Brunton
Рет қаралды 4,1 М.
But what is the Central Limit Theorem?
31:15
3Blue1Brown
Рет қаралды 3,7 МЛН
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН