Equivalence Classes Partition a Set Proof

  Рет қаралды 66,529

The Math Sorcerer

The Math Sorcerer

Күн бұрын

Please Subscribe here, thank you!!! goo.gl/JQ8Nys
Equivalence Classes Partition a Set Proof. This video starts with the definition of an equivalence class and then proves that for a given set S and an equivalence relation R on S, we can write S as the disjoint union of it's equivalence classes. Every single detail is shown or explained in the proofs.

Пікірлер: 39
@MrCoreyTexas
@MrCoreyTexas 2 ай бұрын
Thanks for this material, I kept hearing about equivalence classes, and I forgot what they were. I find that the more abstract "abstract algebra" is, the harder time I have keeping up :)
@Christian-en7vb
@Christian-en7vb 4 жыл бұрын
Best teacher ever! Thank you for your time
@TheMathSorcerer
@TheMathSorcerer 4 жыл бұрын
😄
@TheMathSorcerer
@TheMathSorcerer 10 жыл бұрын
@rampage14x13
@rampage14x13 4 жыл бұрын
Thank you! I am self-studying Munkres's Topology atm and this cleared up my doubts!
@TheMathSorcerer
@TheMathSorcerer 4 жыл бұрын
Glad it was helpful!
@mr.anonymous179
@mr.anonymous179 3 жыл бұрын
Thank you for such a logical reasoning 👍👍
@DP-sq7lw
@DP-sq7lw 2 жыл бұрын
This is so beautiful!!!!! Thank you!!!
@DP-sq7lw
@DP-sq7lw 2 жыл бұрын
For the second part of the last proof, how do we know that C_i is not equal to C_j if i is not equal to j? The proposition only shows that given R is equivalence relation, the equivalence classes are either disjoint or equal to each other. Is it possible that the equivalence classes for different elements in set A are the same (i not equal to j, but C_i = C_j)?
@SiddharthBaruaGeoGeek
@SiddharthBaruaGeoGeek 9 жыл бұрын
Really Well explained! you seem to be a Math Lecturer..
@andrewsharon4066
@andrewsharon4066 4 жыл бұрын
Very good explanation.
@TheMathSorcerer
@TheMathSorcerer 4 жыл бұрын
Thank you👍
@MrCoreyTexas
@MrCoreyTexas 2 ай бұрын
I'll have to think about how the set of equivalence classes partitions a set vs. how cosets also partition a set. Differences and similarities?
@TheAllen501
@TheAllen501 4 жыл бұрын
Better than my prof
@TheMathSorcerer
@TheMathSorcerer 4 жыл бұрын
Thank you
@김용준-o5z
@김용준-o5z 4 жыл бұрын
It was really helpful. Thanks!
@TheMathSorcerer
@TheMathSorcerer 4 жыл бұрын
You're welcome!
@Sky-nt1hy
@Sky-nt1hy 4 жыл бұрын
Another definition i saw was [s]={x| (s,x)element R} But isnt it sRx not xRs? Hope you got what i mean. Im so confused
@JesusHernandez-xv7lf
@JesusHernandez-xv7lf 4 жыл бұрын
[s]={x|(s,x) element R} ={x|sRx}. It's the same definition of relation
@JesusHernandez-xv7lf
@JesusHernandez-xv7lf 4 жыл бұрын
If R is an equivalence relation, then by reflexivity xRs=sRx
@TheMathSorcerer
@TheMathSorcerer 4 жыл бұрын
Ya alternate def same thing so yeah
@milkman2808
@milkman2808 4 жыл бұрын
@@JesusHernandez-xv7lf *by symmetry
@asparagii
@asparagii 4 жыл бұрын
Hello - thanks. A dumb question for someone who knows more about this than I do: at 5:30 you start a proof by contradiction of [s] intersection [t] = empty set. I understand contradiction starts with supposing the negation of a statement - but i thought intersection was equivalent to 'and' and so when applying DeMorgan to the statement, you'd get "[s] or [t] does not = empty set." (Alternatively, replace 'or' with union). I'm guessing I'm wrong after having watched this - but could someone please explain why? Thanks
@TheMathSorcerer
@TheMathSorcerer 4 жыл бұрын
ok the statement is, "S intersect T = empty set", so if this is NOT true, then this means "S intersect T != empty set" And then this means there is an element in the intersection. We didn't apply DeMorgans
@asparagii
@asparagii 4 жыл бұрын
@@TheMathSorcerer ok thanks very much for the quick response Professor. I get that you make the statement false by changing equals to not equals (and it makes sense that "the intersection contains nothing", versus "the intersection contains something" are opposites). I just thought that negating something was the same as making it false, and I thought you'd have to apply DeMorgan to do that (and then distribute the 'not' through the statement, which would change intersects to union).
@Sky-nt1hy
@Sky-nt1hy 4 жыл бұрын
For the beginning, How come it is xRs? ex, S={1,2,3} R={(1,2)} [1]={2} right? Then but by definition of the video it says 2R1 but there is no ordered pair (2,1). Shoudn’t it be sRx instead of xRs?
@avraham25
@avraham25 3 жыл бұрын
I know it's already late but whatever, maybe it'll still help. In your example R isn't equivalent relation, since R needs to be reflexive, symmetric and transitive. In that case you'll see that for every a,b in R if aRb then bRa and that's why [a]=[b].
@Carrarvella
@Carrarvella Жыл бұрын
Thank you
@sophieliu8419
@sophieliu8419 4 жыл бұрын
For the second case where statement 2 holds, can you do without loss of generality?
@brunojimenez6086
@brunojimenez6086 3 жыл бұрын
Thanks!!
@AraDeanMaffy
@AraDeanMaffy 7 жыл бұрын
at 13:46 isnt xE[x]=c exactly what we want to show ? so we cant use it for the proof ? can someone elaborate ?
@mwaleed6249
@mwaleed6249 4 жыл бұрын
x€S and xRx always => x€ [x]
@mwaleed6249
@mwaleed6249 4 жыл бұрын
x€S and xRx always => x€ [x]
@1997tennis
@1997tennis 8 жыл бұрын
Thank you very much!
@a.nelprober4971
@a.nelprober4971 3 жыл бұрын
14:12 how?
@a.nelprober4971
@a.nelprober4971 3 жыл бұрын
Do we replace the ci with s
@andyalbertochavez5135
@andyalbertochavez5135 3 жыл бұрын
@@a.nelprober4971 Not sure what you're asking but it's saying if x is an element in S, then it's an element in [x], which is one of the equivalence classes (c_i), so it's in the union. As a result, any element in S is also in the union so S is a subset of that union.
@a.nelprober4971
@a.nelprober4971 3 жыл бұрын
@@andyalbertochavez5135 thanks bro. I'm so shit at discrete
Direct Image of Union of Sets Proof: f(A U B) = f(A) U f(B)
6:46
The Math Sorcerer
Рет қаралды 63 М.
Equivalence Relations!
17:20
Brain Gainz
Рет қаралды 4,6 М.
the balloon deflated while it was flying #tiktok
00:19
Анастасия Тарасова
Рет қаралды 35 МЛН
amazing#devil #lilith #funny #shorts
00:15
Devil Lilith
Рет қаралды 18 МЛН
Family Love #funny #sigma
00:16
CRAZY GREAPA
Рет қаралды 32 МЛН
Abstract Algebra | Partitions and Equivalence Relations
14:38
Michael Penn
Рет қаралды 13 М.
Number Theory | Congruence and Equivalence Classes
9:50
Michael Penn
Рет қаралды 38 М.
Partitions of a Set | Set Theory
7:59
Wrath of Math
Рет қаралды 131 М.
Levy's Greatest Game of 2024
10:49
Gotham Games
Рет қаралды 94 М.
How to Prove a Relation is an Equivalence Relation
8:18
The Math Sorcerer
Рет қаралды 70 М.
Steven Strogatz: In and out of love with math | 3b1b podcast #3
1:54:08
Grant Sanderson
Рет қаралды 221 М.
Equivalence Classes and Partitions (Solved Problems)
8:45
Neso Academy
Рет қаралды 42 М.
equivalence classes
5:24
John Carter
Рет қаралды 244 М.
Why -1/12 is a gold nugget
15:17
Numberphile
Рет қаралды 2,7 МЛН
the balloon deflated while it was flying #tiktok
00:19
Анастасия Тарасова
Рет қаралды 35 МЛН