Such a clear explanation! And great examples! Thank you, sir!
@DoctorO3143 жыл бұрын
Thank you for your kind words. My pleasure.
@youmaylikeit34653 жыл бұрын
Hi
@babyph652 жыл бұрын
yeah, it really helps for my notes and my finals next week
@rasteapure68878 жыл бұрын
Thank you Sir, very useful tutorial. Especially the Konigsberg problem.
@madhurjyadeka55693 жыл бұрын
This is why I love to learn from Western professors
@MehSteven2 жыл бұрын
Quick and concise explanation. Appreciate it!
@DoctorO3142 жыл бұрын
I'm glad it was useful.
@bibekacharya95863 жыл бұрын
thank you so much for such a clear explanation
@shiva14684 жыл бұрын
Really sir you are best lecturer
@ChandraSekhar-tr7sf3 жыл бұрын
simple and smart teaching
@UnrelentingJuggernaut1 Жыл бұрын
Thank you for this! Recently been playing some brain games on my phone and this is one of the games, up to level 200 in 2 days only 40 levels left /: I’ve been solving these without even knowing the whole backstory and paths kind of just clicked in my head
@aayushperecharla3486 Жыл бұрын
what game is this? Sounds interesting.
@UnrelentingJuggernaut1 Жыл бұрын
@@aayushperecharla3486 the app is called impulse, and the game I liked and finished at the time is called draw one line, there are 235 levels for it that I finished, but there are multiple free games to play on there that are great. You don’t have to pay to play any of it unless you want to with no ads I hope this helps!
@olakaszuba6 жыл бұрын
Well explained! 2h lecture in 10 min ;)
@DoctorO3146 жыл бұрын
Ola Kaszuba thank you.
@ronyspace3135 жыл бұрын
In 3:13 , path in graph theory is define as a graph where no edge and vertice are repeated. So, how come the given diagram is a Euler path? as you've repeated the vertice having three edges more than one time.
@aleksandrkerensky40794 жыл бұрын
Interestingly, adding any one additional bridge makes the Königsberg problem soluble.
@paci.rossy253 жыл бұрын
This is the video i looking for.
@reigngabriellepolvorido68069 ай бұрын
YOU'RE A REAL LIFE SAVER SIR!!!
@DoctorO3149 ай бұрын
I'm glad you found it useful. Thank you for your encouragement.
@saransappa6035 жыл бұрын
Thanks a lot! Wonderful explanation.
@asdasd-ek7nn5 жыл бұрын
Thank you! You explained it very well.
@vishnuva29503 жыл бұрын
Have a great day sir. It was a nice video
@JessicaO_BiNdi3 жыл бұрын
Thanks so much! I finally understand it
@TeanJodibo2 жыл бұрын
Great explanation, thank you so much
@DoctorO3142 жыл бұрын
My pleasure.
@kristelgarcia29444 жыл бұрын
Can you help us to solve my problem Euler paths and circuit?
@Damonlia4 жыл бұрын
Thank you so much! Explenation was great!!
@richardhernandez87024 жыл бұрын
I love the explanation! But...are you related to the Olsen twins? ;D
@daraxxi757 Жыл бұрын
how to figure out odd degree? Please response
@AsiveChowdhury6 жыл бұрын
Well Explained & Thanks a lot !
@rajnishsharma27325 жыл бұрын
increase the playback speed to and it becomes perfect
@apporvaarya4 жыл бұрын
very helpful tutorial
@vasanth.s16586 жыл бұрын
at 6:42 if we start with vertex a, will we get a hamiltonian path that covers all vertices????? pleassseee replyyy
@vasanth.s16586 жыл бұрын
@Deepak Hariharan if we start at 'a' to reach 'e', 'a' should be revisited right???? then how will there be a path???
@niolee68035 жыл бұрын
@Deepak Hariharan Neither is it allowed in a Hamiltonian path. There, you are allowed to only visit each vertex once as you can see in the third example
@yvsjayanth31 Жыл бұрын
I loved it!!
@syedshamail88647 жыл бұрын
excellent lecture, thank u
@femaledeer4 жыл бұрын
how can a hamilton circuit vistit a vertex once and also start and end at the same vertex. If it starts and ends at the same vertex, the vertex was visited twice.
@jeromemalenfant66228 жыл бұрын
Aren't you talking about the more general case of an Euler trail here? A trail is defined as a walk in which no edge is traversed more than once, but in which a vertex can appear more than once. A path is where each edge and each vertex appears at most one time. Your second example using the multigraph is an Euler trail, not an Euler path.
@DoctorO3148 жыл бұрын
Jerome Malenfant yes there are 'trails.' I do believe my second example is an example of an Euler path.
@jeromemalenfant66228 жыл бұрын
But in tracing out the 6 edges you hit the bottom two vertices (call them a and b) twice and the top vertex (c) 3 times, so its a trail, not a path: a (ac)_1 c (ca)_2 a (ab) b (bc)_1 c (cb)_2 b (bc)_3 c.
@mrsrandom30627 жыл бұрын
at 7:07 the graph is a Hamiltonian. Because it uses every vertex ones. why you said no? I am confused
@DoctorO3147 жыл бұрын
The reason that one is not Hamiltonian is because to get to every vertex would require using a vertex more than once. To have a Hamiltonian path, each vertex is is used exactly once.
@sawhenry4 жыл бұрын
3:52 should be “has Euler trail but no Euler path cuz you go through every edge only one time each
@ma.patriciaannyabut65393 жыл бұрын
take a look at its degree, it has an euler path because there are such 2 odd degrees each vertices. we have this concept that it is not actually an euler path if it exceed it into 2 above. but in this case, there are 2 odd degrees each vertices and one has 4. so we can now conclude it as euler path but no circuit.
@lekker23333 жыл бұрын
Thanks for the vid
@DoctorO3142 жыл бұрын
You are welcome.
@aris.konstantinidis3 жыл бұрын
Thank you so much!
@remx112 жыл бұрын
Thank you
@anabildebnath25903 жыл бұрын
Amazing
@mariri.rianaa5 ай бұрын
tnx!
@namelastname76425 жыл бұрын
Thank you 😊
@shekinah44315 жыл бұрын
Thanks sir
@tanveerhasan23825 жыл бұрын
Thanks!
@stephenmufutau-adams79834 жыл бұрын
wish you were my math lecturer
@DoctorO3143 жыл бұрын
You are too kind. You could come to Western Illinois University and take a class with me. 😉
@patrycja_13125 жыл бұрын
Thanks
@hibahasan96274 жыл бұрын
thumbs up👍
@sniyamonaharan47353 жыл бұрын
👍
@HeadRecieverAtHeadOffice3 жыл бұрын
I love you
@vitocorleone60403 жыл бұрын
‘#doge
@shaheershahzad38715 жыл бұрын
Lun py char
@KapilKumar-qr8hv6 жыл бұрын
sir your sound is so slow and not clear
@ahsanakhtar41923 жыл бұрын
Such a clear explanation! And great examples! Thank you, sir!