> if you have one apple then you only have one apple
@pythagorasaurusrex98535 жыл бұрын
Only real mathematicians understand the beauty and logic behind this statement
@thephysicistcuber1755 жыл бұрын
100% accurate
@fridgepuff17222 ай бұрын
You're really going to hit us with the n=1 and not expand it some more? That's it chief? One apple come on man give us more
@EpicHero-qe7zd5 жыл бұрын
"Just Fubini that shit !" - Papa Flamie, 2019
@2neutrino5 жыл бұрын
nice Australian meme at the beginning
@xD-jm2ie5 жыл бұрын
Nothing out of the ordinary to me, what are you on about?
@nanigopalsaha24085 жыл бұрын
This made me laugh more than the meme
@hehebwoai30565 жыл бұрын
Could you do a series where you derive/discuss every oiler thing in maths
@lilyyy4115 жыл бұрын
oily macaroni
@silentinferno23825 жыл бұрын
@@PapaFlammy69 all for itt!!
@pythagorasaurusrex98535 жыл бұрын
This would be one hell of a loooooooong video. Or you can do it in 10 seasons, each with 30 shows lasting ca. 3 hours each :)
@reinerwilhelms-tricarico3445 жыл бұрын
Very well explained. I’ve been always a bit nervous handling double integrals like this - so easy to completely screw up. Next you might want to talk about the Dirichlet probability density. There is a generalisation of the Beta function.
@owenl39295 жыл бұрын
I haven’t watched this until now since I’ve had so much work but I’ve been looking forward to this!!!! Thank you for one of only a few videos on this function on KZbin
@cbbuntz3 жыл бұрын
The beta function is fascinating and really useful for taking a shortcut in otherwise very complicated expressions. One cool thing is if you fill a matrix with the results of the reciprocal beta function (with some (1/2+cos(n+k)/2) terms and dive the first column by 2), and then take the inverse of that matrix, you get the chebyshev polynomials of the first kind. Chebyshev polynomials are orthogonal relative to a weight of (1-x^2)^(-1/2), but orthogonal with no weight when applied to cosines (because the cosine transform is already orthogonal). Chebyshev polynomials of the first kind are jacobi polynomials with a = -1/2, b = -1/2. This is starting to remind me of the beta function.... With some slight tweaks, you can derive the other Jacobi polynomials (It's a little complicated to fit all the math into a youtube comment), but it works out that Legendre polynomials (orthogonal with no weight, so a = 0, b = 0) when applied to cosines are orthogonal realive to a weight of sin(x)^1. The pattern continues for the rest of the Jacobi polynomials. Chebyshev polynomials of the second kind (jacobi polynomial for a=1/2, b=1/2) are orthogonal to (1-x^2)^(!/2), but applied to cosines, they are orthogonal relative to sin(x)^2. So if a jacobi polynomial is orthogonal relative to a weight of (1-x^2)^a (simplifying to set a=b), when applied to cosines, it's orthogonal relative to a weight of sin(x)^(1+2*a), which is directly reflected in the relationship that polynomials have in the beta function. It ends up popping up in Bernstein polynomials too, which is obvious considering they're basically the type of function the beta function integrates, stuff in the form of (1-x)^n*x^(v-n). The beta function for polynomials in that form just ends up being binomial coefficients (n; v), (the actual coefficients are different, but it's equivalent due to symmetry). Each polynomial is normalized so that each member of a set of polynomials contained in v to all integrate to the same value. The sum of this same set of polynomials is just 1, and these properties makes them a "partition of unity"
@subhrajitroy14775 жыл бұрын
hey papa, i broke my neck trying to read the meme :'(
@subhrajitroy14775 жыл бұрын
JUST GOT ADDICTED TO YOUR VIDEOS....TODAY I SPENT 4 STRAIGHT HRS ON KZbin, WATCHING YOU
@spacejunk21865 жыл бұрын
>laughs in australia
@subhrajitroy14775 жыл бұрын
@@spacejunk2186 :)
@tretolien11955 жыл бұрын
Ohhh Flammy diden't you know you could just have used the advanced level 'Horseshoe mathematics' method and have gotten 100% in less than a minute
@owenl39295 жыл бұрын
HERE is what I was looking for Papa Flammy
@emperorpingusmathchannel53655 жыл бұрын
Damn that meme in the beginning. I don't speak Australian!
@srinivasadireddi3 жыл бұрын
at 12:41, why do we need to multiply it with the det of jacobian matrix?
@miro.s2 жыл бұрын
Awesome! I've got relaxed during your video.
@jarogniewborkowski52844 жыл бұрын
Did You already made video about Jacobians and how it can be used in integrals like in this movie You have used?
@antronixful5 жыл бұрын
thank you papa... my girlfriend asked me for help with a programming task, which consisted in finding the zeros of a function of her choice, using numerical analysis ... you had to use 6 different methods, but the function was the important thing (hehehe), so I came immediately to the papa's channel looking for the sickest function... also put some mini-game in the in the script for the waiting time (i.e. for the memes) xd
@jacoboribilik32533 жыл бұрын
Nice definition of the Beta function. It is used in Bayesian statistics very often too.
@frozenmoon9985 жыл бұрын
There is a movie called Close Encounters of the Third Kind, but this is better! It is called Eulerian Integral of the First Kind :)
@wiloux5 жыл бұрын
that 3:13 integareale pronunciation is gold
@MathematicsOptimization5 жыл бұрын
omg pops now that u mentioned it pls do some multivitamin calc like div, grad, curl, jacobi, stokes theorem and shit!!!
@MrCigarro504 жыл бұрын
Great video. Thank you.
@PapaFlammy694 жыл бұрын
glad you liked it! :)
@leafbaguette5 жыл бұрын
I know you math bois don't like this but the physics notation of putting the d(dummy variable) right next to the integral sign makes it easier to not lose track of bounds
Exellent. Now I understand Beta Function. and I can solve. integral. of ln(cos(x)). in another way . Thanks
@svenweiland33225 жыл бұрын
Oh no KZbin recommended fresh toad walker's new video with "Zuschauer von Flammable Maths schauen sich diesen Kanal an"
@svenweiland33225 жыл бұрын
@@PapaFlammy69 hopefully just to troll him or at least get mad at him internally.
@silentinferno23825 жыл бұрын
Trig version? Coming soon? I haven't forgotten about the shirt.
@athul_c13754 жыл бұрын
papa can you name the book I can study these special functions
@uva13125 жыл бұрын
Papa, I think it would be really cool if you put out a video on the incomplete definition of the gamma function. No pressure haha, just a suggestion for the future. Keep up the amazing videos.
@subhrajitroy14775 жыл бұрын
Today PAPA became proud by receiving fan mail...for the kids who didn't know. BTW 9TH COMMENT PAPA!!!
@mahmoudkhamis4095 жыл бұрын
4:26 yes that's right but in Quantum mechanics I don't :)
@hassan0100125 жыл бұрын
Awesome!
@insert_a_good_name_here45855 жыл бұрын
Have you read 'inside interesting integrals' by Paul Nahin? Just curious :)
@nanigopalsaha24085 жыл бұрын
I have read it. Absolutely fantastic!
@surferriness5 жыл бұрын
Halfway through the vid Didnt correct the t to Tau TRIGGERED
@biswadeepchatterjee60745 жыл бұрын
Papa flammy can u make a video on Jacobian determinants nd matrices plzzzz for ur fellow mathematicians
@spacejunk21865 жыл бұрын
Lol this boi thinks the Euler integral actually exists.
@hacker2ish3 жыл бұрын
Pls explain why gamma is continuous
@paulbucher46555 жыл бұрын
Papa❤
@michelkhoury14705 жыл бұрын
Cheers papa Laplace :p
@huhulili90215 жыл бұрын
Mr Daddy, is it alright if I ask a question, what's ur view in learning applied math for comp science? I'm at a cross road on whether to do a degree in CS or in applied math
@pacman73285 жыл бұрын
If there's a beta function then where is the Alpha function?
@vaualbus5 жыл бұрын
The finalproblem is does it exixt the fourier transform of the gamma function? And if so how to calculate it :)
@karolakkolo1235 жыл бұрын
To my naked eye, the answer is no. Even if there is a fourier transform of the gamma function, it is most likely not a function itself, but a distribution. And that distribution doesn't look like it would be nice to handle. Just take a look at the positive reals with Im(z)=0, and the fact that it is non-periodic-like and monotonically increasing starting with the minimum between 1 and 2
@s1ng23m4n5 жыл бұрын
excuse me, but I still do not understand, is the beta function purely derived from the gamma function?
@ChanawerebiChanawerebi6 ай бұрын
the beginning of this video..... Misophonia........... 😭😭😭😭😭
@unknownknown3475 жыл бұрын
Papa you inspire me!!!
@garogarabed61964 жыл бұрын
11:20 the same Spiel lolll
@yotty974 жыл бұрын
Can't you give an intuition for the beta function? Like the gamma function is the continuous analog of the factorial function....so what is the intuition behind the beta function? EDIT: i just found out it's related to (and in a sense derived from) the binomial function - you should really have made a mention of this. Just like defining the gamma function in terms of a continuous factorial, it's extremely useful to be given a motivation for the beta function too
@nicholasquiroga28614 жыл бұрын
epic, thank you
@PapaFlammy694 жыл бұрын
:)
@matheus_rml5 жыл бұрын
hey papa, I challenge you to solve the sum from 0 to infinity of 1/((4n+1)^2), this is actually a challenge that I recieved from my friends and I couldn’t solve
@matheus_rml5 жыл бұрын
Flammable Maths holy shit that was fast
@angelmendez-rivera3515 жыл бұрын
Matheus Ramalho Once you see how to solve it, you'll be mindblown. It's not very difficult, but you do need to be quite clever.
@angelmendez-rivera3515 жыл бұрын
Flammable Maths The question is, can you solve the alternating version of that series? Namely, 1/1^2 - 1/5^2 + 1/9^2 - 1/13^12 + •••. It's much more challenging :)
@etasyr5 жыл бұрын
One of the definitions of Catalan's Constant (which he already made a video on) is G = -⅛𝛑² + 2 * ∑ 0 to ∞ of 1/(4n+1)² Rearrange and ∑ 0 to ∞ of 1/(4n+1)² = ½G + ¹⁄₁₆𝛑² It would be nice were he to show how to get to that definition ^_^
@matheus_rml5 жыл бұрын
Angel Mendez-Rivera of course I can’t hahahaha
@bon121214 жыл бұрын
NEW SUBSCRIBER!
@PapaFlammy694 жыл бұрын
Hi! :3
@Mystery_Biscuits5 жыл бұрын
Video is 17:29 on the thumbnail, woo!!!
@thesattary Жыл бұрын
why you are so good?
@matron99365 жыл бұрын
Please solve Integral(ln(x)sec(x)dx)
@angelmendez-rivera3515 жыл бұрын
Matron I think this is a non-elementary integral. This is because if you use integration by parts, you eventually integrate the antiderivative of secant, and I am fairly certain that one is well-known to be non-elementary.
@thephysicistcuber1755 жыл бұрын
Trivial with horseshoe integration bruh
@peterdriscoll40705 жыл бұрын
Nice!
@peterdriscoll40705 жыл бұрын
@@PapaFlammy69 Is beta related to the reciprocal of x+y comb x = (x+y)!/x! y!
@novanecros91455 жыл бұрын
Papa I have failed you. i factorial sent me to the reflection formula which then sent me here and then I realized I haven't studied multivariable calc so I'm not ready for the awesomeness. I'll be back in two weeks, promise. :(
@adithyar42823 жыл бұрын
everyone will have one apple that is Adam apple
@obaidurrehman24643 жыл бұрын
Saying " cool ,cool " again and again 🤣🤣🤣🤣
@JamalAhmadMalik5 жыл бұрын
Papa or papá?
@dannygjk5 жыл бұрын
papa=adad ;) Kelly's Reflection formula.
@ducksfan10185 жыл бұрын
Yeah sex is cool and all but have you seen Papa Flammy destroy inteGERALS by the thousands
@gdsfish32145 жыл бұрын
When is the redpill alpha integral coming libtard?
@holyshit922 Жыл бұрын
What about derivatives of Beta function fe Int((ln(cos(x)))^n,x=0..pi/2) t = -ln(cos(x)) -t = ln(cos(x)) exp(-t) = cos(x) -exp(-t)dt = -sin(x)dx exp(-t)dt = sin(x)dx exp(-t)dt = sqrt(1 - exp(-2t))dx dx = exp(-t)/sqrt(1 - exp(-2t))dt Int((-t)^nexp(-t)/sqrt(1 - exp(-2t)),t=0..infinity) Int((-1)^nt^nexp(-t)/sqrt(1 - exp(-2t)),t=0..infinity) Let f(t) = 1/sqrt(1 - exp(-2t)) and L(f(t)) = F(s) Our integral equals d^n/ds^n F(s) at s = 1 Lets calculate L(1/sqrt(1 - exp(-2t))) Int(exp(-st)/sqrt(1-exp(-2t)),t=0..infinity) u = exp(-2t) du = -2exp(-2t)dt du = -2udt dt = -1/(2u)du -1/2Int(u^{s/2}/(u sqrt(1-u)),u=1..0) 1/2Int(u^{s/2}/(u sqrt(1-u)),u=0..1) 1/2Int(u^{s/2-1}/(sqrt(1-u)),u=0..1) 1/2Int(u^{s/2-1}(1-u)^{1/2-1},u=0..1) L(1/sqrt(1 - exp(-2t))) = 1/2B(1/2,s/2) Int((ln(cos(x)))^n,x=0..pi/2) = d^n/ds^n (1/2B(1/2,s/2)) at s = 1 But how can I calculate derivative of Beta function
@CDChester5 жыл бұрын
THAT GULP DOOOOE #ASMR
@xdtidebringer55835 жыл бұрын
Nice
@razmakbazai35563 жыл бұрын
wow
@mrinalchoudhury27253 жыл бұрын
Ons wakhan
@kevind.shabahang3 жыл бұрын
cool :)
@benjaminarias51935 жыл бұрын
Gucci af you boi
@sofianeafra61615 жыл бұрын
Hey yen say 555 in Germany 😂😂
@sofianeafra61615 жыл бұрын
@@PapaFlammy69 oh shit ! Studying maths for pH.D is easier than pronouncing this word 😂😂
@garykang37125 жыл бұрын
Please don’t make a confusion with t and tau
@michelkhoury14705 жыл бұрын
Ummm I think I did it with the same way
@kwirny5 жыл бұрын
Ok Papa,now i have enough from the gamma stuff :().