Cristobal Liendo new definition of bounded functions
@SODA635 жыл бұрын
Cristobal Liendo funny af
@PrashantBatule5 жыл бұрын
Tchebyshev approves 🌚
@shermanthompson8715 жыл бұрын
So it didn’t fail. People just need to actually know the damn theorem.
@seess82515 жыл бұрын
Applying pythagoras theorem to non-right triangles and get wrong results doesn't mean the theorem is defective. A fridge is pretty useless if you want it to wash your clothes. I can go on... The error is in the user, who selected the inappropriate tool
@chanpreet30005 жыл бұрын
Absolutely, LH is used for only indefinite form .. the above mentioned was not indefinite
@nickbroderick75955 жыл бұрын
@@chanpreet3000 The original limit *does* have an indeterminate form when the limits of the divisor and dividend are considered respectively (+inf/+inf), which is one of the necessary conditions of the theorem. The other - that the quotient of derivatives has a limit - fails. That is the salient (and oft overlooked) point being made here.
@prathamyadav31055 жыл бұрын
Actually the proof is "proved" using tailor theorem. Proofs don't fail. They just require some conditions to be fulfilled.
@98danielray5 жыл бұрын
@@prathamyadav3105 it comes directly from the definition of derivative
@davidjames16845 жыл бұрын
Maybe if you had the proper health insurance, L'Hospitals rule wouldn't fail.
@marketmail495 жыл бұрын
🤣🤣🤣
@mikeljanhajrullaj57845 жыл бұрын
Fail, fail, when you have to do with the square root! ...
@ethanjensen6615 жыл бұрын
Lol the autocorrect
@ryanadams95845 жыл бұрын
Wooooooow
@megauser85124 жыл бұрын
lol
@ivan17935 жыл бұрын
No wonder the guy's smiling so much. I would too if I had such good quality chalks and board!
@aashsyed12773 жыл бұрын
nahhh hagoromo chalk is better
@tdpro36073 жыл бұрын
@@aashsyed1277 not the best, just good enough
@pandit-jee-bihar5 жыл бұрын
If you end up using L'Hopital for limits then it's a good idea to keep on checking the indeterminate form at each stage and it must be either 0/0 or ~/~ to apply it further. In other word limit must exist for the rule to apply.
@RaviSingh-qd5pz5 жыл бұрын
The limit does exit at stage second as it is not 0/0 or ~/~. You're contradicting yourself.
@2013Aleksey20135 жыл бұрын
"... or 0*∞." Otherwise your comment sums it up perfectly.
@darkseid8565 жыл бұрын
@@RaviSingh-qd5pz he's not contradicting himself . He's just saying the conditions under which we can use L'Hospital Rule . And he is correct . It Requires 0/0 or ∞/∞ form to use this rule
@yashagnihotri69015 жыл бұрын
@@RaviSingh-qd5pz hehe , beginners
@agustinsaenzanile1900 Жыл бұрын
@@darkseid856why you can use it when you have inf/inf? i thought you only can use it when is 0/0
@georgesadler78303 жыл бұрын
From this short lecture, I finally understand L'Hospital's Rule from start to finish.
@jaggysmf18605 жыл бұрын
Damn, that chalk board is clean
@atulchahalhr16574 жыл бұрын
That the nice one😂
@Vonzi000013 жыл бұрын
@caoutchoucmilisec -1
@chessandmathguy7 жыл бұрын
yep, well said. this is correct.
@alphamega33067 жыл бұрын
Nice to see the inclusion of the formal method showing that the limit as x -> infinity for the function cos(x)/x is equal to zero.
@tino_S5 жыл бұрын
Are we assuming that x will be going to positive infinity or negative infinity here?
@darkseid8565 жыл бұрын
@@tino_S doesn't matter the value of cos(x) ALWAYS lies between -1 and 1 (including -1 and 1) for all values of x
@ocococoe11 жыл бұрын
The squeeze theorem shows that cos(x)/x = 0, but this question isn't asking for cos(x)/x. It's (x + (cosx))/x = x/x + cos(x)/x = 1 + 0 = 1.
@mr.lonely12135 жыл бұрын
R u alive ???
@ProfessorDrGoku5 жыл бұрын
Paras Mittal nah he dead
@darkseid8565 жыл бұрын
@@mr.lonely1213 it's been 6 years .... Obviously he's dead.
@cipher015 жыл бұрын
Been there since 2009
@zwelakhe225 жыл бұрын
He's right though
@Giganesh_exe5 жыл бұрын
I would have used the squeeze theorem for cos(x)/x to show why it’s limit equals 0. Great video though
@toastersman2174 жыл бұрын
You could have also squeeze the presented limit between (x-1)/x and (x+1)/x (By using |cos(x)|
@anmoljhamb87754 жыл бұрын
@@toastersman217 oh yeah, nice
@bridge51895 жыл бұрын
Conclusion: L'hospital rule is valid only when the limit of the first derivative exists
@diegoarana58625 жыл бұрын
Not really. If the first derivative doesn't have a limit you might be able to take the second derivative which might have a limit. It only didn't work in this case because the function had that pesky cosx.
@bridge51895 жыл бұрын
@@diegoarana5862 So, you mean one can go on and on having derivatives until you reach a point where the limit exists?
@darkseid8565 жыл бұрын
@@bridge5189 yes .If the first derivative doesn't have a limit , then take second and so on.... But make sure to check the limit form in each and every step . Because L'Hospital Rule can only be used when we have a limit of 0/0 or ∞/∞ form .
@Shaymin10105 жыл бұрын
@@diegoarana5862 No! If the ratio of the first derivatives is a limit that doesn't exist, then you can never ever say nothing about the original limit - even if the ratio of the second derivative does exist.
@Datboy19915 жыл бұрын
diego arana Be careful with the terminology, because how this is phrased will impact the validity of the statement. A second use of L’Hosp is only warranted if you get an indeterminate form again, which is very different from saying the limit does not exist. If the limit actually does not exist, L’Hosp is invalid and you need to do something else.
@MrQwerty15ification5 жыл бұрын
I really enjoyed this video. I never knew of that stipulation than the limit had to exist. When I worked out the problem I immediately tried to see if it diverges or converges. But it did neither. Very interesting!
@askjfjawjhwahwjehjsjah16685 жыл бұрын
L'Hospital's Rule never failed, it's your way of using it that fail.
@ralphdams75685 жыл бұрын
Ow man, this video was posted almost 9 years ago before it showed up at my side. :)
@AlexssandroMeneses5 жыл бұрын
For me too!
@primephoenix1.0773 жыл бұрын
Now its 10 years....😅
@BizVlogs3 жыл бұрын
Could also use squeeze theorem. The function is greater than or equal to (x-1)/x ,and less than or equal to (x+1)/x
@kevingast45192 жыл бұрын
Love it. A professor at MIT is using chalk and a blackboard to explain math while public schools insist that every teacher use a $5000 Smartboard because kids can't learn with chalk. Love it. kg
@wulphstein5 жыл бұрын
Damn! That was the one rule whose name I could remember!
@Metalhammer19935 жыл бұрын
it got butchered to "the hospital rule" all through out our course back then. Next yeat our professor had it, he introduced it like this. "Next we´re going to discuss L´Hopital´s rule. or the hospital rule as this is where somebody will end up if i have to hear that for another year"
@Mordenperson5 жыл бұрын
Everyone saying this isn't correct is wrong as the question is the lim of 1+(cos(x)/1) and using squeeze theorem you get cos(x)/1 is 0 so the limit is infact 1.
@hbarudi5 жыл бұрын
Limits can be separated through addition, subtraction, multiplication, and division. That rule shows up in the textbook before L'Hopital's rule.
@tetraedri_18345 жыл бұрын
Provided that the separated limits exist and are finite, just as in the l'Hospital. Two counterexamples, if we take limit to infinity, we get lim (x-x) =? (lim x) - (lim x) = infty - infty, lim(sin^2(x) + cos^2(x)) =? (lim sin2(x)) + (lim cos^2(x)) DNE. The first limit is obviously 0 and second is 1, but separating sums gave nonsense.
@hbarudi5 жыл бұрын
@@tetraedri_1834 I agree, best to solve for functions that have a limit as x approaches what we are looking for before taking the limit itself.
@tdpro36073 жыл бұрын
lhospital is used if you compute a lim thats 0/0 or inf/inf, which is unable to obtain thru normal means
@bek_quereshi5 жыл бұрын
So it is not L - Hospital's rule, It is lohpital's rule.
@saburousaitoh4 жыл бұрын
Please look the paper: [29] viXra:2001.0091 submitted on 2020-01-06 17:52:07, (58 unique-IP downloads) Division by Zero Calculus for Differentiable Functions L'Hôpital's Theorem Versions
@AnuragVaibhavv5 жыл бұрын
If we replace x by 1/t and change the limit to t -- 0 then we can solve that
@anmpir5 жыл бұрын
what an incredible instructor.
@Vonzi000013 жыл бұрын
you can use the squeeze theorem to prove that the limit of cos(x)/x = 0
@Red-Brick-Dream5 жыл бұрын
No, you can't.
@christianondo96375 жыл бұрын
I don’t see why you need to
@danielgates75595 жыл бұрын
MoonlapseVertigo he actually can, but it’s overkill...
@isaacaguilar56425 жыл бұрын
Jerry Tan yea theres no need in this case
@andresmoraga18885 жыл бұрын
MoonlapseVertigo Agreed. Nice name btw, my favourite song
@ShreyaPalak2 жыл бұрын
We need more of these!
@wesolyfoton5 жыл бұрын
Oh... but I can use L'Hospital rule to solve this limit! (x - 1) / x
@michalbotor5 жыл бұрын
funnily enough l'hospital's rule doesn't apply for the ever more interesting case of the limit of this expression as x goes to zero either, as the numerator does not go to zero as the x goes to zero. quite an interesting function it is.
@ny6u4 жыл бұрын
the cosine taylor series term divided by x goes to zero while x/x goes to 1 as x-> infinity
@juanpedro1984091413 жыл бұрын
There's an extra "s". It's just L'Hôpital.
@tsujimasen8 жыл бұрын
Juan Pedro Romero Either way is fine, yours is the older way, the s is the newer way.
@HighLordSythen5 жыл бұрын
In old French, it was written with the s. Later, the ô replaced the os in French words like hospital >> hôpital and coste >> côte. This applied to other vowels as well. That's why you see it written both ways in modern materials.
@pandit-jee-bihar5 жыл бұрын
Everyone in higher secondary makes that mistake the first time guess in my experience :)
@SimsHacks5 жыл бұрын
L'hospital or l'hôpital.. both are possible. The accent remplaces the S.
@yaoooy5 жыл бұрын
The funny thing is marquis de l hopital just stole that rule from another mathematician
@michalbotor5 жыл бұрын
just a useful sidenote: 1
@Dhruvbala5 жыл бұрын
Alternatively, one could use squeeze theorem as -1
@tdpro36073 жыл бұрын
its just a demonstration, a simple but bad one since it missed the crucial point of using lhospital, for when a limit seems to reach 0/0 or inf/inf.
@tdpro36073 жыл бұрын
3b1b's explanation should help idk
@pathagas5 жыл бұрын
so L’Hospital’s rule can’t prove that a limit doesn’t exist? this completely changes my entire Calc I experience.
@jarikosonen40795 жыл бұрын
The 1-sin(x), x->Inf doesn't make sense. It is possibly good to note that LH wouldn't work backwards. So to say that if '1-sin(x)' was given task you'd integrate it backwards (cause if its not proven its not LH pre-results) and then do necessary steps and get result of '1'. LH doesn't work for sine and cosine infinite cases and nothing works, except the DNE (does not exist).
@ffggddss5 жыл бұрын
Let's see . . I can think of a couple ways L'Hôpital could be said to "fail" - 1. You violate its premise (numerator & denominator must both → 0 or both → ∞) 2. The premise is satisfied, but the rule keeps yielding a result that needs for the rule to be applied again, thus never ending on a final result Will it be one of these? I see from the opening expression that there's a 3rd way - 3. The premise is satisfied, but the rule yields a divergent (non-converging) expression when the original expression converges So now the question becomes, how do we guard against this circumstance, in a general case? Post-vid: OK, so there's a 2nd premise - the resulting limit must exist. Important to note also (to emphasize a point made in the video), that sometimes, when the result DNE, the original also DNE. Fred
@nimeshpoudel894 жыл бұрын
1st question limit is 1
@georgechris4202 жыл бұрын
That is an logical explanation but what also exists is the "sandwich theorem"as we used to call it in class, which says if limf(x)
@IshaaqNewton5 жыл бұрын
Oscillation of the function sin(x) around x-axis does mean, the function is trying to converge to 0. So, it didn't fail.
@vikramvalame99905 жыл бұрын
No
@IshaaqNewton5 жыл бұрын
@@vikramvalame9990 No man, I used Probability Distribution to find it. It's not a fairy tale.
@Jeremy_Fisher5 жыл бұрын
@@IshaaqNewton Sure, but using L'Hospital's Rule here doesn't get you any closer to the answer than not using it, so in that sense it failed in it's duty to help you find the answer.
@IshaaqNewton5 жыл бұрын
@@Jeremy_Fisher Think again. lim(x->0) sin(1/x)=0 it also helped me to find integral of cosx/(x^2+1) between 0 and infinity while using Feynman's technique.
But the lim ₓ→ₙ 1+cosx/x where n=∞ , will be 1+∞/∞= undefined not 1.
@volodask4 жыл бұрын
cos x does not have a limit in infinity. As Joel says, it behaves like a "wiggly constant", so the limit is approximated as 1 + c/∞, which is 1.
@justviewer54584 жыл бұрын
Use squeeze theorem to solve Lim x to the infinity , cos (x)/ x
@joaopalrinhas52425 жыл бұрын
You can only use the L'Hopital rule when there is an undertermination, you just can't define a limit to cos or sin functions to infinity.
@abrahammekonnen5 жыл бұрын
Great video explaining the topic in further depth. I would recommend doing this more often if you haven't already
@mancinellismathlab74515 жыл бұрын
Great explanation and example
@BobbyJCFHvLichtenstein5 жыл бұрын
I did just this yesterday Fail L'Hospital's Rule
@merveilmeok24165 жыл бұрын
...”So why don’t you pause the video, spend a couple of minutes to work on that and and we’ll are going to work on it together”. I heeded the advice and I got a hamburger from the kitchen.
@tapaskumarpaul49825 жыл бұрын
find the limit (f^-1(8x)-f^-1(x))/x^(1/3) as x is tending to infinity where f(x)=8x^3+3x Please solve it
@supertren7 жыл бұрын
We must to check this three statements: 1) f(x)→±∞ 2) g(x)→±∞ 3) f′(x)/g′(x)→L But the 3 limit does not exist, therefore we cannot apply L'Hopital's rule.
@mrAmal455 жыл бұрын
In my college it is L- Hospital's rule not Lopital's rule
@henri1_965 жыл бұрын
I think it's just pronounced "Lopital"
@alimehrabifard18305 жыл бұрын
Change x to 1 over x and then the x goes to zero (equal to the initial condition where x went to infinity), you get 1 super quick. ;)
@yaoooy5 жыл бұрын
Yes but change nane to the variable. X cannot be substituted by 1/x but rather by 1/sonething else, just a formality :)
@metarus2085 жыл бұрын
The limit does not exist.
@marcosmimenza3 жыл бұрын
So that's how a behind the scenes obsolet green screen looks like without the movie on it?
@Hyajae5 жыл бұрын
The chalk reminds me of the times where I drew on the sidewalk with chalk. So yesterday.
@Eduardo-hv1yh5 жыл бұрын
Adrian Monk in an alternate universe
@JeroAlmufakir5 жыл бұрын
OMG
@energy11365 жыл бұрын
Don't you actually need to proove that lim(cosx/x) as x spproaches infinity is 0 with the use of the sqeeze theorem?
@inakibolivar6645 жыл бұрын
TheFiendMegaCyber97 No, we just need to apply the constant but wigglier rule and done
@Jungleland335 жыл бұрын
Why don't I not pause the video.......... instead I'll watch this with a puzzled look on my face and my jaw on the ground.
@morschlesinger70815 жыл бұрын
It's Jerry from Rick and Morty
@crocopie5 жыл бұрын
Omg! Even the shirt is the same! I'm glad Jerry in our universe teaches at MIT.
@Usuario4593 жыл бұрын
@@crocopie this Jerry would be a moron?
@CodyShell12 жыл бұрын
why can't my recisitation teacher be this good?
@mr.lonely12135 жыл бұрын
R u still on utube?
@ralphdams75685 жыл бұрын
L’ Hopital’s rule is NOT failing
@keineangabe89935 жыл бұрын
Right, it's just not applicable. Big difference.
@yaoooy5 жыл бұрын
Nope it is applicable if you change variable
@chrismanson32115 жыл бұрын
I teach calculus and I did not know that fact, thank you.
@dhruvchaurasiya5455 жыл бұрын
Limit as x tends to infinity of cos x doesnt exists
@Jeremy_Fisher5 жыл бұрын
Good thing the problem isn't limit as x tends to infinity of cos x
@adityatiwari24882 жыл бұрын
Who came here after the post of Jee simplified
@Kartik-yw7kp2 жыл бұрын
me 😃😃
@ガアラ-h3h Жыл бұрын
Welll obv the limit is just one cause you can split the fraction and then cos x: R -> [-1;1] this you get 1
@bobkameron4 жыл бұрын
Great video and explanation!
@SherlockHolmes-di2yr4 жыл бұрын
2:40 it's never near negative 1 pal
@Vibranium3753 жыл бұрын
Uhh isn't sin X always between 1 and -1? For example sin (3π/2) = -1
@SherlockHolmes-di2yr3 жыл бұрын
@@Vibranium375 I meant 1-sinx is never negative 1
@Vibranium3753 жыл бұрын
@@SherlockHolmes-di2yr oh ok I misunderstood ur statement :)
@pascaldelcombel75645 жыл бұрын
You should review what is really L'Hospital rule before saying it fails...
@sujeetkumarroy30623 жыл бұрын
Ya its good as you tought ...😍😍😍😍
@swatisingh13165 жыл бұрын
Thank you so much sir
@melchiortod295 жыл бұрын
Really good video, thank you
@lleo36385 жыл бұрын
The rule actually says, if lim(f'/g') converges and equals L, then lim(f/g) also converges and equals L, hence the equation lim(f/g) = lim(f'/g'). In this case, the rule doesn't fail, the conditions are not met at the first place.
@devanshsharma7438 жыл бұрын
we'd not use l'hopital rule in this, because it's not in the form of any number divided by zero
@tsujimasen8 жыл бұрын
Devansh Sharma you can use l'hospital for 0/0 as well as inf/inf
@plaustrarius4 жыл бұрын
Leh hos pi tal
@davidjohnston42405 жыл бұрын
Where did that nomenclature "the second limit" for "the limit of the derivatives" come from? I've never seen that before.
@agustinl23025 жыл бұрын
I'm pretty sure it's not standard nomenclature and he was just informally referring to it as the second limit that would come up. Just like he explains cos(x) as "a constant but wigglier".
@7ymke7 ай бұрын
even mit says its L Hospitals instead L'Hopitals
@positivegradient5 жыл бұрын
The limit of periodic functions like sin and cos does not exist as we go to infinity, since it's an oscillating function, and infinity is not some exact number, so we don't know what value sin or cos will take.
@LaneSurface5 жыл бұрын
But that's not what we are taking the limit of. It's the lim(cos(x)/x), which does approach a value (zero) as x tends toward infinity. x>>cos(x) as x->inf.
@positivegradient5 жыл бұрын
@@LaneSurface You're right, but the expression you get by applying L hospital's is (1-sinx), the limit of which does not exist. Even though the original expression tends to 1 as x goes to infinity. This is why L hospital's rule fails here.
@positivegradient5 жыл бұрын
I was trying to highlight that you need to be wary of periodic functions in x goes to infinity limit problems.
@SriNiVi5 жыл бұрын
I wouldn't call it failure per se.. you just can't use it in this case and it's illogical to use it too.
@zwelakhe225 жыл бұрын
I thought I am shitty at Math until I saw this
@pandit-jee-bihar5 жыл бұрын
Not all limit problems are recommended to be solved using L'Hopital rule.
@samuelprakash57344 жыл бұрын
You guys do know that it is L’Hôpital’s rule not L’Hospital.
@nelsonmcnamara5 жыл бұрын
Lo-pi-tal's rule. LOL. Been saying it as "La Hospital" Rule all my life....
@rockspoon65285 жыл бұрын
Why would you bother using L'Hospital's rule on an equation that so obviously trends to 1...
@santhoshwagle98575 жыл бұрын
What do you mean by 'second limit exists'? How do you say second limit doesnt exist in this case??
@heramb5755 жыл бұрын
What do you mean by the second limit professor?
@vikramvalame99905 жыл бұрын
The limit one gets by taking the ratio of the derivatives
@heramb5755 жыл бұрын
@@vikramvalame9990 ok ..why does it need to exsist though?what's the proof for that?
@anushkaartsandcrafts30695 жыл бұрын
L hospital rule used in limits to solve the problem easily this is not part of limit so it just like a trick so I think this rules never fail
@UjwalAroor5 жыл бұрын
gyanenendr pandey It is not a trick.L’hopital’s rule is based on the assumption that once you differentiate it,the new limit must be in inderminate form.Most beginner classes dont teach this but that is an assumption made by the rule.Most of the limits where you applied l’hopital’s rule were in indeterminate form.The above problem is not a trick,it is just an exception.
@stiventson44645 жыл бұрын
@@UjwalAroor I don't get it, you wanted to say that the limit must be indeterminate when you just *evaluate it* to it to work? because doesn't make sense that when you differentiate the limit, it must be inderterminate... I mean , On the contrary, it should be determined so it would works...
@UjwalAroor5 жыл бұрын
Stiventson44 Ok so i'm not exactly sure what you are trying to convey with your comment.But as I have interpreted it, I think you are trying to say that when we differentiate a limit, it must always be in indeterminate form.This is not and the video above is proof.But if you are not saying that then please reply to this comment.
@stiventson44645 жыл бұрын
@@UjwalAroor this line you wrote "L’hopital’s rule is based on the assumption that once you differentiate it,the new limit must be in inderminate form" I don't know why you said the new limit must be indeterminate once you differentiate
@UjwalAroor5 жыл бұрын
Stiventson44 Dude if the new limit is not in inderminate form then most of the time you cant solve it.In the above example,the limit wasnt in indeterminate form so it couldn't be solved.
@DjVortex-w5 жыл бұрын
That was the least mathematically rigorous calculation I have seen in a while.
@HarshRajAlwaysfree6 жыл бұрын
Maybe cuz I'm just in High school my mind was blown!!! I will remember this thing till death who knows when someone gives this question to trick me :)
@CounterTheAnimatorocn16 жыл бұрын
QUICK, What is the limit of (x+cosx)/x as x approaches infinity?!!??!
@z1lla45 жыл бұрын
@@CounterTheAnimatorocn1 didn't answer, guess he wasn't ready
@CounterTheAnimatorocn15 жыл бұрын
@@z1lla4 maybe he died
@SuperParaNatural5 жыл бұрын
@@CounterTheAnimatorocn1 oof.
@gauravmishra15085 жыл бұрын
Very easy question. Answer is 1.solved by geometry while pausing your video while you told so at 0:51
@saisitharth5 жыл бұрын
It applies only for 0/0
@lunkel81085 жыл бұрын
No, also for infinity/infinity. Both are equivalent, really. Just take both the numerator and denominator to the power of -1 and it's plain as day.
@prasadsawant13585 жыл бұрын
they wrote hospital in title
@dendion7115 жыл бұрын
cosx/x goes to 0 as x goes to infinity because: |cosx|
@yaoooy5 жыл бұрын
You can't apply hoptal rule on trig functions that tend to infinity
@michaelbayer58875 жыл бұрын
... its Opera or Operation like calculation - as OPERA and COSIMA fan tutte.
@vibration10285 жыл бұрын
I corrected my pronounciation here
@ultimatevideoproducer21175 жыл бұрын
Very good explanation. Also your handwriting is neat. One thing I'd improve is how you explained "dividing by x" to the x+cosx/x to get 1+cosx/x... I only followed your explanation of that since I've somewhat done this before.
@protodosto5 жыл бұрын
x/x = 1
@notsoslimkids11 жыл бұрын
Why couldn't this be solved with the squeeze theorem? With that method, the limit as x approaches infinity is 0. So, is the Squeeze Theorem incorrect in instances?
@Mordenperson5 жыл бұрын
The question is Lim of 1 + (cos(x)/1)
@071-babum44 жыл бұрын
Can you change the title please..?? L'Hopital rule is correct one.!!!
@rahulbag29315 жыл бұрын
Why does this limit not exist for sinx but exist for (cosx)/x though both are oscillating function?