Best Fenwick Tree explanation currently on the internet... perhaps even the entire world. Congrats!
@chiranjeevthomas47966 жыл бұрын
Being a visual learner , these tutorials helped me to get the intuition behind the algorithm because of the visual aids you used . I revel in problem solving and am on codeforces and topcoder... I was really lacking in algo - ds knowledge and your tutorials are helping me up my game :D , thanks a lot bud . P.S - Please make a video on RANGE UPDATES too , that would really help !!
@ThePabs2134 жыл бұрын
Awesome explanation, I would really appreciate a Segment Tree or Interval Tree explanation like this
@TheWildStatistician5 ай бұрын
Wow, just wow! On a side note, I think it's better to consider the position of the LSB in the 0-indexed way, since in that case an index is directly responsible for 2^(0-indexed position of LSB) element below it, inclusive of itself. Then cascading to the appropriate next element is intuitive, just remove the LSB. Essentially going down 2^(0-indexed position of LSB) :D. Anyways, fantastic job!
@harishvemula67095 жыл бұрын
MASTER PIECE !! The best ever Fenwick tree tutorial on the universe .
@ДимитрийЮн-ц7д4 жыл бұрын
I like your presentation and methodical approach. When material is shown properly It saves a lot of time.
@МихаилХамхоев7 жыл бұрын
I FOUND IT!!! The best one! Thank you! :)
@rishabhmishra96114 жыл бұрын
Really nice explanation everyone is just teaching how to code but is telling the fundamentals of this datastructures🔥
@cristian-adrianfrasineanu98552 жыл бұрын
i - LSB(i) is equivalent to i & (i - 1) to get the next greatest power of 2 that is smaller than i. This will save time with avoiding to write another function for parsing the bit representation of i.
@catte_6376 Жыл бұрын
it's actually `i & (-i)` !
@ubabnameh2 ай бұрын
@@catte_6376 no its not. it is i - (i&-i), which, if you analyze is equivalent to OP's expression i & (i-1)
@minghanxu71995 жыл бұрын
I have to say this video is awesome and really clear! thanks!
@mathuratudu72717 жыл бұрын
The best video I ever watched on Fenwick Tree
@just_patricia2803 жыл бұрын
Thank you for the help! You rock!
@abhinavsingh42214 жыл бұрын
This channel is awesome! Thank you buddy for your awesome videos :)
@wanga67454 жыл бұрын
You are my hero, great explanation!
@vipulgupta38274 жыл бұрын
@WilliamFiset can you please add some videos for Segment tree. Your explanations are brilliant
@eugnsp6 жыл бұрын
Bit manipulations are much easier and clearer if zero-based indexing is used rather than one-bases indexing. Then there is a direct correspondence between ranges of responsibilities and bit value in the n-th position.
@vipulgupta38274 жыл бұрын
can you put more details related to 0 based indexing for this. i am not sure if 0 based indexing will work
@geogreenmanu4 жыл бұрын
12 in binary 1100, then LSB is at third position ? How? The least significant bit is the right-most bit in a string, if the bit are order right to left, as done in this example.
@joseville3 жыл бұрын
Yeah, some of the language used is imprecise. Instead of LSB, it should be "Least Significant One". And also in this video, "third position" means the 2^2 = 4's place.
@pavan79597 жыл бұрын
Thankyou so much sir your videos helped me a lot.
@arijit_ad6 жыл бұрын
Every nicely explained. Can you also explain segment tree?
@purushottam20104 жыл бұрын
Please make a video on range updates!! I am not able to find a way to grasp it
@incognito833613 күн бұрын
Best explanation out there
@karamkassem98212 ай бұрын
Thanks for the explanation ! But I can't see why this algorithm is good. Everyone is taking about how to get the ranges but no one is talking about how to build the tree, it will take O(nlogn) time which is not efficient ! I mean if we used the first method where building the prefix sum array is in O(n) time and access in O(1) time, it is more efficient for range sum problem ! Any thoughts?
@guy_you_can_trust19 күн бұрын
its O(1) for a sum(i, j) but updates are O(n). it's also possible to build the tree with O(n) TC
@al-hassanmohamed2339 Жыл бұрын
Thanks a lot to you ❤
@erithion5 жыл бұрын
Great explanation. Thanks!
@sgdfdsgs3 жыл бұрын
what an amazing channel
@harshitsharma73584 ай бұрын
great explanation
@rasca00276 жыл бұрын
I have a question. at 5:10, isn't LSB the right-most bit, which is 0?
@WilliamFiset-videos6 жыл бұрын
Yep, you're correct. That's a mistake in the audio recording, the slides are still accurate and highlight the LSB.
@rasca00276 жыл бұрын
Thank you!
@kgzcq4 жыл бұрын
@@WilliamFiset-videos Hi, do you mean the "LSB that is 1" ? because by definition, LSB is always the right-most bit, and according to the video/slides, you seem to be referring to the least significant bit that is a 1.
@joseville3 жыл бұрын
@@kgzcq This! Another good term for it could be "Least significant One"
@vetiarvind5 ай бұрын
Dude this rocks..
@nitishshingde97677 жыл бұрын
great tutorial!!!
@JynyChen Жыл бұрын
2:32 what is PLA?
@hoanganhtu90903 жыл бұрын
the link is broken
@ZakariaBinAhmed2 жыл бұрын
💚
@AtiyaAnjum Жыл бұрын
😀
@georgetsiklauri4 жыл бұрын
Mate, you've got quite a lot of some very strange cracking noise in your videos.. sort of you're juggling with iron balls during recording this video.. it's very annoying.