Find all real x

  Рет қаралды 29,253

Prime Newtons

Prime Newtons

Күн бұрын

Пікірлер: 133
@fryguy2009
@fryguy2009 3 ай бұрын
You have a very clear presentation style. Also, your chalkboard writing is very clean and legible. That’s rare in math instruction. I will continue to enjoy your presentations.
@Christian_Martel
@Christian_Martel 3 ай бұрын
Very nice! To find one solution might be easy, but proving this is the only solution is another game. Great job Coach!
@nanamacapagal8342
@nanamacapagal8342 4 ай бұрын
ATTEMPT: At about 5:40 is where my solution diverges from yours. I recognized the form of the equation a^2 - ab + b^2 - a - b + 1 = 0 as the equation of some conic section. I remember how to rotate conic sections, replace a with tcos(theta) - usin(theta) and b with tsin(theta) + ucos(theta). I selected theta = 45 degrees and scaled everything by sqrt(2) so the substitution would become a = t + u, b = t - u Substituting and simplifying leads to: t^2 + 3u^2 - 2t + 1 = 0 (t-1)^2 + 3u^2 = 0 The only way this works is if t = 1 and u = 0. Otherwise the left hand side will be bigger than 0. t = 1 and u = 0 means a = 1 and b = 1. thus, 1 = 2^x and 1 = 3^x. Clearly x = 0 is the only possible solution.
@bobajaj4224
@bobajaj4224 3 ай бұрын
yup, ellipse since the discriminant is
@invisiblelemur
@invisiblelemur 3 ай бұрын
Love that argument that three positive terms summing to zero means they're all zero.
@user-dq6jf9ru9e
@user-dq6jf9ru9e 4 ай бұрын
I solved this in a "brutal" way using complex numbers)) Starting with the equation at (5:14) a² - (b+1)a + (b²-b+1) = 0 and solving it we come to a=½(b+1 ±i√(3)(b-1)) Since a in left side is a real number then the imaginary part in the right side must be equal to zero. So b=1 and a=1.
@jflamingo26
@jflamingo26 3 ай бұрын
This is very nice :) I used a similar strategy, but instead used the quadratic formula to write a in terms of b. This produces a negative determinant for all cases except b = 1, meaning that the only way we get a real solution is if b = 1 and hence x = 0.
@Heater-v1.0.0
@Heater-v1.0.0 4 ай бұрын
Wonderful. You must be the coolest maths presenter on KZbin!
@daniorugbani5914
@daniorugbani5914 4 ай бұрын
I really enjoyed the way you solve math problems. You’re simply one of the best math teachers I have ever seen. Keep up the good work.
@PrimeNewtons
@PrimeNewtons 4 ай бұрын
Thank you
@kaenemorerinyane9392
@kaenemorerinyane9392 4 ай бұрын
My thought process was that imagining the graph of that function. It tends to negative infinity as x gets bigger and tends to 0 as x goes to negative infinity. After finding the solution of x=0, an extremely close number less than 0 gives you a value less than 1 as with a value slightly greater than 0 I conclude that the graph has a maximum at x=0 i.e the graph never meets the line y=1 ever again so x=0 is the only real solution
@ronaldjensen2948
@ronaldjensen2948 4 ай бұрын
Taking the derivative of the function gives ln(2)2^x+ln(3)3^x-2ln(2)4^x+(ln(2)+ln(3))6^x-2ln(3)9^x which is positive for x < 0 and negative for x > 0. This shows that x = 0 is the absolute maximum and therefore the only real solution.
@Grecks75
@Grecks75 3 ай бұрын
Before watching: (1) Let a = 2^x and b = 3^x. The equation can then be written as: (a + b) + ab - (a^2 + b^2) = 1. (2) a and b can both be considered exponential functions of x with bases greater than 1. Therefore they both are either > 1, = 1, or < 1, both at the same time (same x). (3) Now let's consider the product (a - 1)(b - 1). We have: (a - 1)(b - 1) = ab - (a + b) + 1 = 2ab - (a^2 + b^2) = -(a - b)^2, where the second equality is according to the equation (1). (4) According to (2) we know that (a - 1)(b - 1) >= 0. We also have -(a - b)^2
@Grecks75
@Grecks75 3 ай бұрын
What a beautiful problem! ❤
@eastonrocket兀
@eastonrocket兀 3 ай бұрын
Bro is truing to take away his views from his videos by cheating in the comments 🗣️🔥
@eduardoyamakawa1754
@eduardoyamakawa1754 4 ай бұрын
I loved how you presented the solution, especially the part in which you multiplied by 2. Just something I noticed that would make it slightly shorter is that you could have broken down the +2 as 1+1 and you would have those perfect squares.
@krisbrandenberger544
@krisbrandenberger544 4 ай бұрын
I noticed that same thing.👍
@FIST_3807
@FIST_3807 3 ай бұрын
YEP , I ALSO NOTICED THAT
@ناصريناصر-س4ب
@ناصريناصر-س4ب 4 ай бұрын
The equation can also be written in the form (2a-b-1)²+3(b-1)²=0
@PrimeNewtons
@PrimeNewtons 4 ай бұрын
I didn't see that
@binaprasad6477
@binaprasad6477 4 ай бұрын
Pls explain I don't get it
@TEACHINGMATHEMATICSbyMrNKundu
@TEACHINGMATHEMATICSbyMrNKundu 3 ай бұрын
​@@binaprasad6477 It is very easy & clear.... just multiply 4 instead of 2 both sides, you get the result
@Jeremy-i1d
@Jeremy-i1d 3 ай бұрын
Beautiful use of CTS to produce the sum of three squares = 0 to narrow possible solutions down to just x=0 at a stroke - love it ❤
@iankr
@iankr 4 ай бұрын
Many thanks. I love your channel. Not just for the maths, but because I find your voice and delivery soothing and relaxing.
@satyapalsingh4429
@satyapalsingh4429 3 ай бұрын
Your method of solving the question is amazing .I like your method of expression .You are so cool .Keep it up !!!
@MichaelGrantPhD
@MichaelGrantPhD 3 ай бұрын
I love this content, but at first, I found it to go too slow. And then I realized that if I play it back at 1.5x it's absolutely perfect. If you feel the same tension, try it!
@Manas_12
@Manas_12 3 ай бұрын
I’m genuinely amazed by the way you solved this problem algebraically! It’s fascinating to see how different approaches can lead to the same solution. I tackled this problem by graphing it, which gave me a clear visual representation, but your algebraic method is both elegant and insightful. Great work!
@barence321
@barence321 3 ай бұрын
I'm really enjoying your videos, and I loved your simple algebraic proof. Very nice!
@rakeshrampal1587
@rakeshrampal1587 2 ай бұрын
Very nice way to complete square terms and making a simple conclusion.
@venkatkrishnankoluman870
@venkatkrishnankoluman870 3 ай бұрын
I love your passion for maths. I am 67 years old and keep doing math sums to keep my brain ticking and pass my time. Your channel is a great motivator.
@하태욱-b2x
@하태욱-b2x 4 ай бұрын
Many thanks for your passion on math. From a+b-a^2+ab-b^2=0, where a,b are real number, apply quadratic formula about a, then the expression will show complex solution, then b must be 1 to be real a, which also confirms a=1, then x=0
@alhazen8736
@alhazen8736 2 ай бұрын
Excellent approach to solve this fun problem!
@manuelgonzales2570
@manuelgonzales2570 4 ай бұрын
Excellent video. Thank you!
@N00MAK_CA_Finalist
@N00MAK_CA_Finalist 3 ай бұрын
Amazing😮 the way you explained sir was really really a practical approach and loved your way of teaching
@kylecow1930
@kylecow1930 3 ай бұрын
a+b+ab-a2-b2=1 a+b-ab-1=a2+b2-2ab (a-1)(1-b)=(a-b)2 (a-1)(b-1)
@baidonchandipo2804
@baidonchandipo2804 3 ай бұрын
I love the level you are in terms of dealing with numbers
@TheMariusMan
@TheMariusMan 3 ай бұрын
Wonderful equation. It took me 10 minutes and I found another way, but yours seems more adequate. Great video!
@nikolayguzman331
@nikolayguzman331 3 ай бұрын
Excellent as usually!
@rodro3429
@rodro3429 9 күн бұрын
Here’s a beautiful method I found which I think is fascinating. 2^x+3^x-4^x+6^x-9^x=1 Let 2^x=a and 3^x=b then: a+b-a^2-b^2+ab-1=0 Negating both sides: a^2+b^2-a-b-ab+1=0 Factoring: (a-b)^2-(a-1)(b-1)=0 Let the left hand side be Δ, so that: Δ=0 Now consider the following polinomilal: P(x)=1/2(a-1)x^2+(a-b)x+1/2(b-1) Notice Δ is the discriminant of P(x). And since Δ=0, it follows that P(x) has exactly 1 real solution ∀a∈R For this to happen, the quadratic coefficient must be 0. So (a-1)/2=0=>a=1. Analogously it can be found that b=1. a=b=1 so x=0
@orni8519
@orni8519 4 ай бұрын
Thanks for very interesting math problem, and I really love your style of speaking. Love from Russia
@marielcanela7228
@marielcanela7228 3 ай бұрын
This was so crazyyy!!! Loved it
@ManojkantSamal
@ManojkantSamal 4 ай бұрын
Respected Sir, Good evening....You're the master key of mathematics......
@sakshamsingh7325
@sakshamsingh7325 2 ай бұрын
We can easily do by odd or even…for any other power of x except zero left hand side is even but right hand side is odd…only when x is zero is the equation equal
@AshenWijethilaka-j4i
@AshenWijethilaka-j4i 4 ай бұрын
Sir, could you please make a video on Clairaut's equation and Ricatti equation ?
@amiraliazimi6355
@amiraliazimi6355 3 ай бұрын
What a beautiful equation! ❤
@GreenMeansGOF
@GreenMeansGOF 2 ай бұрын
Can you share the other way you tried to factor? I promise I can handle it.
@jo555444
@jo555444 4 ай бұрын
The beauty of Algebra. Wonderful solution.
@emilie375
@emilie375 26 күн бұрын
Well done ! I made the a, b substitution but I didn't found the good factorization
@fplancke3336
@fplancke3336 4 ай бұрын
That was a beautiful problem with an unexpected solution
@AxillaryPower2
@AxillaryPower2 3 ай бұрын
Your handwriting on the chalk board is the cleanest I've ever seen!
@ishantagarwal1082
@ishantagarwal1082 2 ай бұрын
Here's what I did: Let 2^x=t Let 3^x=k Treating the given equation as a quadratic ak²+bk+c=0, the discriminant, D = √{-3(t-1)²} This implies the only real solution is when t=1. The rest is elementary.
@shlokthosar8094
@shlokthosar8094 4 ай бұрын
Beautiful problem sir I love your channel..❤❤❤❤
@peterjansen4826
@peterjansen4826 4 ай бұрын
A simple answer for a problem with some tricky rewriting. It shows how much mathematics education fails, you don't practice this rewriting enough at a school, they keep it limited to just solving the same standard 2nd-degree equations all the time.
@Aatif45
@Aatif45 4 ай бұрын
Love from Kashmir ❤
@matematikgokseldir
@matematikgokseldir 4 ай бұрын
please don't lose this energy that you have, teacher!
@jimmeade2976
@jimmeade2976 3 ай бұрын
It's been a long time since I did math, but I would have approached this by using natural logarithms. Since a^x=xln(a), you get x(ln(2)+ln(3)-ln(4)+ln(6)-ln(9)=1 or x(.693+1.098-1.368+1.791-2.197)=1 or x(0.017)=1 or x=1/0.017=58.82. That's a completely different answer. What did I do wrong?
@futureiskey6049
@futureiskey6049 3 ай бұрын
Remember that (a+b+c..)^x ≠ a^x + b^x ….
@jimmeade2976
@jimmeade2976 3 ай бұрын
@@futureiskey6049 I know that, and it's not what I am doing. I'm converting each item in the list to its natural logarithm, then factoring out the x, leaving a sum of natural logarithms.
@futureiskey6049
@futureiskey6049 3 ай бұрын
@@jimmeade2976 what you did is ln(2^x+3^x…). You can’t pull the x out of that logarithm. To pull the logarithm out, the inside argument must be (a +b + c)^x not (a^x) +b^x etc
@jimmeade2976
@jimmeade2976 3 ай бұрын
@@futureiskey6049 If a^x=x*ln(a), why can't I do what I did? I'm taking the natural log of each term, not the sum of the terms
@futureiskey6049
@futureiskey6049 3 ай бұрын
@@jimmeade2976 you can’t take the natural log of each term. When you apply a function to both sides of an equation, the function applies to everything. So if I have a+b+c = 1 then, ln(a+b+c) = ln(1) Not ln(a) + ln(b) + ln(c) = ln(1) You can’t distribute a function over each term.
@subhashpatil2833
@subhashpatil2833 4 ай бұрын
Sir your videos are excellent.❤
@doowadiwadi
@doowadiwadi 3 ай бұрын
I could be wrong but seems to me that when entering x=0 in the original equation one gets 2+3-4+6-9 = 1=> -2 = 1. Which is not true.
@dirklutz2818
@dirklutz2818 3 ай бұрын
Beautiful!
@kugathasasarmasivakumar5083
@kugathasasarmasivakumar5083 2 ай бұрын
First, I found trivial case x=0, then I proved x
@LITHICKROSHANMS-gw2lx
@LITHICKROSHANMS-gw2lx 3 ай бұрын
I enjoy mathematics very much and solution is too great. Sir can you solve this lim(infinite tower of 'x') (x→0)
@mazenzidieh
@mazenzidieh 29 күн бұрын
Very very nice. Thanks
@raimis0u
@raimis0u 3 ай бұрын
Keep up the enthusiasm ❤
@alexandermorozov2248
@alexandermorozov2248 4 ай бұрын
The solution is great! But additional questions arise :) Does this equation have complex solutions, how many of them and how to find them?
@Simpson17866
@Simpson17866 4 ай бұрын
Only if there are complex values of "x" that give 2^x = 3^x = 1 EDIT: No, wait, you're right - if a-1, b-1, and a-b are complex, then they don't each need to be 0 for the squares to add up to 0. if a = A+Bi and b = C+Di, then we get (A+Bi-1)^2 + (C+Di-1)^2 + (A+Bi-C-Di)^2 = 0
@WillamGorsuch
@WillamGorsuch 3 ай бұрын
1:25 The answer, when x = 1, is -2, not 1.
@bwcbiz
@bwcbiz 4 ай бұрын
weLL-played, sir.
@math9333
@math9333 4 ай бұрын
Hi man I just saw your channel, and I subscribed immediately I was wondering if you could do some videos on evaluating the partial sum for some combined geometric and arithmetic series like for example 1/1 + 2/2 + 3/4 + 4/8 + 5 /16 ..... and possibly shows a cool trick as you always do
@Maths__phyics
@Maths__phyics 3 ай бұрын
Hello, İ discovered phyics formula, And I wanna to shoow this formula to America, I wanna help from you, please help me.❤❤❤
@moonwatcher2001
@moonwatcher2001 3 ай бұрын
Awesome ❤
@m.h.6470
@m.h.6470 4 ай бұрын
Solution: 2^x + 3^x - 2^x * 2^x + 2^x * 3^x - 3^x * 3^x = 1 2^x = a 3^x = b a + b - a² + ab - b² = 1 a = b = 1 is an obvious solution, leading to 2^x = 1 = 2^0, so therefore x = 0 a + b - a² + ab - b² = 1 a - a² + ab + b - b² = 1 a - a² + b(a + 1) - b² = 1 |*-1 -a + a² + b(-a - 1) + b² = -1 |+a -a² b(-a - 1) + b² = a - a² - 1 |+((-a - 1)/2)² (completing the square on the left side) ((-a - 1)/2)² + 2b(-a - 1)/2 + b² = ((-a - 1)/2)² + a - a² - 1 ((-a - 1)/2 + b)² = (-a - 1)²/4 + a - a² - 1 ((-a - 1)/2 + b)² = ((-a - 1)² + 4a - 4a² - 4)/4 ((-a - 1)/2 + b)² = (a² + 2a + 1 + 4a - 4a² - 4)/4 ((-a - 1)/2 + b)² = (-3a² + 6a - 3)/4 ((-a - 1)/2 + b)² = 3(-a² + 2a - 1)/4 |√ (-a - 1)/2 + b = √3√(-a² + 2a - 1)/2 |-(-a - 1)/2 b = (√3√(-a² + 2a - 1) - (-a - 1))/2 b = (√3√(-a² + 2a - 1) + a + 1)/2 So for all values a, such as -a² + 2a - 1 > 0, there are real values for b -a² + 2a - 1 > 0 |*-1 a² - 2a + 1 < 0 (a - 1)² < 0 This is a contradiction, as a square can't be negative So in conclusion, the only real solution - in fact the ONLY solution - is x = 0
@MathTutor1
@MathTutor1 4 ай бұрын
Very nice!
@silver-ep8wn
@silver-ep8wn Ай бұрын
beautiful solution
@PriyanshuShil_
@PriyanshuShil_ 3 ай бұрын
Great solution
@Chestno58
@Chestno58 3 ай бұрын
Thank you Sir...
@dondisco6399
@dondisco6399 4 ай бұрын
Very nice trick!❤️
@alohamark3025
@alohamark3025 4 ай бұрын
Perfecto.
@andrasferencz7948
@andrasferencz7948 4 ай бұрын
This one is brilliant!
@tmrapper6378
@tmrapper6378 4 ай бұрын
Beautiful solution
@internallyinteral
@internallyinteral 4 ай бұрын
Thank you for keeping math cool 😎
@nebulousquartz2712
@nebulousquartz2712 3 ай бұрын
Thank you ❤
@محمدالنجفي-ظ1ه
@محمدالنجفي-ظ1ه 4 ай бұрын
My god that's so impressive performance you just made it simple
@arian-i5c
@arian-i5c 3 ай бұрын
But this can be easily solvable by logarithms When use log in both sides of equation we can easily get x=0
@joeschmo622
@joeschmo622 4 ай бұрын
✨Magic!✨
@nyyakko
@nyyakko 2 ай бұрын
holy hell this one is so cool!
@nothingbutmathproofs7150
@nothingbutmathproofs7150 4 ай бұрын
Amazing!
@SidneiMV
@SidneiMV 4 ай бұрын
2ˣ = a 3ˣ = b a + b - a² + ab - b² = 1 (a + b) - (a² - ab + b²) = 1 (a + b)² - (a³ + b³) = (a + b) a³ + b³ = (a + b)² - (a + b) a³ + b³ = (a + b)³ - 3ab(a + b) a³ + b³ = (a + b)² - (a + b) (a + b)² - 3ab = (a + b) - 1 (a + b)² - (a + b) + 1 - 3ab = 0 (a + b) = [1 ± √(12ab - 3)]/2 ..... I don't know how to continue .....
@DavidSantiagoPoloSilveraBio
@DavidSantiagoPoloSilveraBio 4 ай бұрын
Math problem-solving is exciting. Your channel is addictive. And your are damn HOT 🔥, professor (sorry for this harassment, but I just had to let it flow). Have a nice day, professor!
@PrimeNewtons
@PrimeNewtons 4 ай бұрын
Thank you.
@nicolasb11
@nicolasb11 4 ай бұрын
Wow Prime Newtons bravo 😂🎉
@hervesergegbeto3352
@hervesergegbeto3352 4 ай бұрын
Merci professeur
@KaivalyaChess
@KaivalyaChess 3 ай бұрын
sir you are the best
@surendrakverma555
@surendrakverma555 4 ай бұрын
Thanks Sir
@Modou_Desu
@Modou_Desu 4 ай бұрын
Morning digest
@rubinkatz9850
@rubinkatz9850 2 ай бұрын
you are amazing
@alainrogez8485
@alainrogez8485 3 ай бұрын
Mazette !
@RyanLewis-Johnson-wq6xs
@RyanLewis-Johnson-wq6xs 4 ай бұрын
2^x+3^x-4^x+6^x-9^x=1 x=0
@danielbranscombe6662
@danielbranscombe6662 4 ай бұрын
I manipulated the equation into 2^x+3^x+6^x=1+4^x+9^x both sides are strictly increasing. Thus there can be at most 1 solution. Since x=0 is a solution it is the only solution.
@jay_13875
@jay_13875 4 ай бұрын
That's not a valid argument. Two strictly increasing functions can intersect an arbitrary number of times, e.g. sin(x)+2x = cos(x)+2x.
@niloneto1608
@niloneto1608 4 ай бұрын
​@@jay_13875Except if all terms are increasing individually, then it's valid. However, op's original argument fails when x
@RyanLewis-Johnson-wq6xs
@RyanLewis-Johnson-wq6xs 4 ай бұрын
x=0 final answer
@swiftswallow3879
@swiftswallow3879 4 ай бұрын
Mathematics for breakfast 🥣
@ruthlee9819
@ruthlee9819 3 ай бұрын
2^x+3^x+6^x=1+4^x+9^x 2^x+3^x+6^x=2^2x+3^2x+1^2 6^X=1 ?
@ruthlee9819
@ruthlee9819 3 ай бұрын
X=0
@aidensharp6515
@aidensharp6515 4 ай бұрын
Uh, if you take the equation modulo two, you get only the 3^x + 9^x left which becomes 1+1 = 0 modulo 2. But this isn't 1 so x = 0.
@justekiara1953
@justekiara1953 3 ай бұрын
Math is easy with you as a teacher.
@kianushmaleki
@kianushmaleki 3 ай бұрын
❤️
@AmanPrajapati-o2r
@AmanPrajapati-o2r 3 ай бұрын
Any one from India ❤ ❤ ❤ AttEnDaNcE HeRe 😊😊😊😊😊❤. ❤ .❤
@ToanPham-wr7xe
@ToanPham-wr7xe 3 ай бұрын
😮
@RAWLEDGE
@RAWLEDGE 4 ай бұрын
There should be (-1) instead of (+1)
@pyprem
@pyprem 4 ай бұрын
He brings everything to the RHS of the line above (as he says at around 4:38) but then also 'sneakily' switches the sides when writing the second last line down, so +1 is correct (since it stays on the RHS which he just writes down first). Or alternatively, you could multiply the line above with -1 and then bring the -1 from the RHS to the LHS.
@RAWLEDGE
@RAWLEDGE 4 ай бұрын
​@@pypremThanks Doubt cleared
@absolutezero9874
@absolutezero9874 4 ай бұрын
Sadly no response from you
@emyrronain6983
@emyrronain6983 4 ай бұрын
There should be a second logarithmic solution that includes imaginary number Right?
@xinpingdonohoe3978
@xinpingdonohoe3978 4 ай бұрын
There should be so, yes. The conclusion that each term must be equal to zero is because he wanted them to be real quantities, so their squares would be nonnegative. Complex numbers have no such issues. Remember that 2^x and 3^x for complex x will be multivalued, except when x is an integer. And if x is not rational, this will mean countably infinite values. There will definitely be some, possibly a finite amount or possibly an infinite amount, where a specific branch (determined by the logarithm's branch) makes the equation equal to 1.
@alipourzand6499
@alipourzand6499 4 ай бұрын
Actually the solution is exp(2*n*pi*i) ☺
@rasikajayathilaka3516
@rasikajayathilaka3516 4 ай бұрын
X = 0
@raymondseligman7003
@raymondseligman7003 4 ай бұрын
You have 4^X = (2^x)^2. Wouldn’t that be? 4x^2?
@xinpingdonohoe3978
@xinpingdonohoe3978 4 ай бұрын
@@raymondseligman7003 (a^b)^c=a^(bc) (a^b)^c≠a^c b^c The x is in the exponent of the 2, it's not multiplied by it. So we can't have the x suddenly multiplying the 2.
@WillamGorsuch
@WillamGorsuch 3 ай бұрын
x = 0. It is not hard.
@baddogproductions9722
@baddogproductions9722 4 ай бұрын
My equation: (a-1)(1-b)=(a-b)² => a-1=a-b and 1-b=a-b, from which a=b=1
Prove 30^(10n+1)  + 5^21n is divisible by 31
10:54
Prime Newtons
Рет қаралды 13 М.
Find all real pairs (x,y)
14:38
Prime Newtons
Рет қаралды 10 М.
Solving a Quartic Equation
17:08
Prime Newtons
Рет қаралды 118 М.
Find all x
14:53
Prime Newtons
Рет қаралды 20 М.
ALL solutions to x^2=2^x
13:21
blackpenredpen
Рет қаралды 1,7 МЛН
Austrian  Olympiad System of Equations
27:12
Prime Newtons
Рет қаралды 30 М.
A Canadian Problem
13:21
Prime Newtons
Рет қаралды 18 М.
so you want a VERY HARD math question?!
13:51
blackpenredpen
Рет қаралды 1 МЛН
How to Take the Factorial of Any Number
26:31
Lines That Connect
Рет қаралды 1,3 МЛН
Imaginary numbers aren't imaginary
13:55
Ali the Dazzling
Рет қаралды 293 М.
Can you crack this beautiful equation? - University exam question
18:39
A Vieta Problem
16:43
Prime Newtons
Рет қаралды 11 М.