1/ Calculating the sides of the right triangle ABC: (x+5).(2x-5)=2 . 54-------> 2.sqx +5x - 133 =0 -----> x= 7-----> AB=9 and BC= 12 2/ Calculating the side a of the square: BCF and ABE are similar triangles so: CF/12 =BE/9 = (CF-BE)/(12-9) = FB/3------> CF/12= FB/3-----> CF/FB =12/3=4 -----> FB= a/4 -----> sq a+ sq(a/4) =sq12----> sq a =(144x16)/17 3/The area of the yellow region= (144x16)/17 -54 = 81.53 sq cm
@PreMath Жыл бұрын
Thanks ❤️
@yalchingedikgedik8007 Жыл бұрын
Thats very nice Thanks Sir Very easy explained.
@Abby-hi4sf Жыл бұрын
Fantastic approach. Amazing how triangle similarity cut short the process! Thank you again
@PreMath Жыл бұрын
You are so welcome! ❤️🌹
@bigm383 Жыл бұрын
Lovely work, Professor!❤
@PreMath Жыл бұрын
Glad you like it! Thank you ❤️
@johnwindisch1956 Жыл бұрын
I did it by adding all the areas of the triangles and solving for X. And it worked!
@amarendrasingh7327 Жыл бұрын
Upload some more hard questions videos please 🙏🙏
@PreMath Жыл бұрын
Definitely! Thanks ❤️🌹
@santiagoarosam430 Жыл бұрын
(X+5)(2X-5)=2*54→ X=7 → CB=12 ; AB=9 → Razón de semejanza entre AEB y BFC, s=9/12=3/4→ CF=b→ BE=3b/4 ; FB=b/4 ; AE=3b/16 ; DA=13b/16 → (b*b/4*2)+(3b*3b/4*16*2)+(13b*b/16*2)+54=b²→ b²=48²/17→ Área amarilla =(2304/17)-54=81.5294 Gracias y un saludo cordial.
@PreMath Жыл бұрын
Thanks ❤️🌹
@Stanislaw2344 Жыл бұрын
Moc pěkný příklad.
@Copernicusfreud Жыл бұрын
Yay! I solved the problem. I used the quadratic formula to find the value of x.
@PreMath Жыл бұрын
Fantastic ❤️
@wackojacko3962 Жыл бұрын
Can the unknown side length of the Blue Triangle be found using Heron's Formula? Just curious...🙂
@giuseppemalaguti435 Жыл бұрын
(x+5)(2x-5)=108...x=7.....Ay=l^2-54=16*144/17-54,con Pitagora e i triangoli simili
@PreMath Жыл бұрын
Thanks ❤️🌹
@shadrana1 Жыл бұрын
IABCI=54 cm^2 2*IABCI=108 cm^2= 9*12=AB*BC=(2x-5)(x+5) (2x-5)=9 >>>>x=7cm.............(1) (x+5)=12>>>>x=7cm.............(2) x=7 satisfies the area equation of ABC. Triangle CFB is similar to triangle BAE (angles are the same in both triangles) Hence, CF/BE=12/9=4/3. Therefore, CF=4/3 BE..................(3) Let CF=FE=ED=DC= 4t say, 4t= 4/3 BE EB=3/4*4t= 3t..............................(4) BF=FE-BE= (4t-3t)=t.....................(5) Consider triangle CFB, CB^2=CF^2+FB^2 Pythagoras, 12^2=(4t)^2+t^2=17t^2 t^2=144/17..................................(6) IDEFCI=16t^2 =(16*144)/17 ICBAI=(54*17)/17 IYellow shaded regionI=IDEFCI-ICBAI=[ (16*144)-(54*17)]/17=(2304-918)/17 =1386/17 is approx. equal to 81.53 cm^2 Thanks for the puzzle PreMath and have a good Festive Season.
@ChandanRoy-sr6yu8 ай бұрын
Sir's voice is very heavy😅😅
@RaymineRaymine Жыл бұрын
Agree
@PreMath Жыл бұрын
Thanks ❤️
@unknownidentity2846 Жыл бұрын
Because of a lack of time this time only a short comment: Again a very nice problem and I solved it essentially the same way you showed in the video. Just a short remark: When units are used for the area, then units should also be used for the lengths. In this case it would mean x+5cm and 2x−5cm. I think it is easier to skip the units completely as long as the focus lies on math. Best regards from Germany
@PreMath Жыл бұрын
Thanks for sharing 🌹
@prossvay8744 Жыл бұрын
Area of the yellow shaded region=2304/27-54=1386/17=81.53 cm^2
X is not a length, it could be negative, however x+5 is a length, so x can't be that far negative.
@Mycroft616 Жыл бұрын
It cannot be negative at all due to the other side length being 2x - 5. 2x - 5 > 0 2x > 5 x > 5/2 (or 2.5) Premath should have included this tidbit, but we do know x cannot be negative.