The first method is so beautiful that I had to watch it twice 🤩
@PreMath Жыл бұрын
Super! ❤️🌹
@sail2byzantium Жыл бұрын
It was very interesting to see--I confess I had to watch it twice. I wish I could be that clever. I was very literalist in doing the Pythagorean theorem followed by some trig work.
@sail2byzantium Жыл бұрын
Did the trig version--doing the tangents of both angles: x = 4/3 = 53.1301 . . . degrees and y = 7/1 = 81.8698 . . . degrees. 53.1301 . . . degrees + 81.8698 . . . degrees = 135 degrees.
I also thought of this method and got the answer but this is 11 standard's method. The premature is trying to explain it based on school maths. Undoubtedly he is great!!!
@Irishfan Жыл бұрын
The simpler solution would be to find the arctangent of both angles and angles them together. Arctangent 4/3 = 53.13° and Arctangent 7/1 = 81.87° then ad the angles 53.13° + 81.87° = 135° much much simpler!
@montynorth3009 Жыл бұрын
Another trig.method using tangents to find the angles X & Y then adding them together. Tan X = 4/3 = 1.333. (Tan -1) 1.333 = 53.1301. Tan Y = 7. (Tan-1) = 81.8699. X + Y = 53.1301 + 81.8699 = 135.
@PreMath Жыл бұрын
Thanks for sharing! ❤️
@juanalfaro7522 Жыл бұрын
I would have used the tangent of (x+y) in the 2nd method; it's much faster. The result is (-1) for which you infer the angle is 135 degrees (not 315 or -45 degrees), since the sum of 2 angles in the 1st quadrant is an angle not past the 2nd quadrant.
@PreMath Жыл бұрын
Great! Thanks ❤️
@jimlocke9320 Жыл бұрын
Solution by tangent sum of angles formula: tan(x + y) = (tan(x) + tan(y))/(1 - tan(x)tan(y)). Here, tan(x) = 4/3, tan(y) = 7/1 = 7. tan(x + y) = (4/3 + 7)/(1 - (4/3)(7)) = (25/3)/(1 - 28/3) = (25/3)/(-25/3) = -1. arctan(-1) = 135°, so x + y = 135°.
@PreMath Жыл бұрын
Thanks ❤️
@tombufford1369 ай бұрын
At a quick glance, The Red outlined right angled triangle has sides 3,4 and 5 (Pythagorean triple). Then x = sin ^-1(4/5) = 53.13 and y = tan^-1(7/1) =81.87 then x + y = 53.13 + 81.87 = 135. Looking forward to the Video.
@tellerhwang364 Жыл бұрын
Geometry puzzle method 1.use 2△ABC and 1△BDE △CDK,△ABC congruence △KHA,△BDE congruence →BDKH rectangle 2.CK=AC,ACK=90 △ACK lsosceles right triangle →CAK=45,CAB=x,KAH=y →x+y=180-45=135😊
@PreMath Жыл бұрын
Thanks ❤️
@kennethwright870 Жыл бұрын
Excellent
@padraiggluck2980 Жыл бұрын
There’s a third (interesting) solution. Regard these line segments as vectors, which have magnitude and direction but not location. Translate the red vector three units left and translate the blue vector one unit left and seven units down. The vectors begin at the origin and terminate at (-3,4) and (-1,-7), respectively. The red vector has magnitude 5, the blue vector has magnitude 5*sqrt2) ~= 7.07 units, and angles x and y are contiguous. Take the l2norm of the terminal points, they are 5*sqrt(5) ~= 11.18 units apart. Now use the Law of Cosines, which is easy, to get 135 degrees.
@Mediterranean816 ай бұрын
tan x = 4/3 tan y=7 tan (x+y) = (tanx + tany)/1-tan x*tan y tan (x+y) = (4/3+7)/1-7*4/3 tan (x+y) = (25/3)/-25/3 tan (x+y) = -1 x+y = arctan (-1) since x and y are acute angles so x+y
@soniamariadasilveira7003 Жыл бұрын
I loved your explanations, thanks teacher!
@PreMath Жыл бұрын
I'm so glad! ❤️🌹
@DB-lg5sq Жыл бұрын
tan(x+y)=-1 x+y=135
@tombufford1369 ай бұрын
Thank you , impressive !
@williamwingo4740 Жыл бұрын
All angles in degrees: x = arctan(4/3) = 53.13; y = arctan(7) = 81.86; x + y = 53.19 + 81.85 = 134.99 degrees. 🤠
I went for tan(-1)(4/3) + tan(-1)(7), which the calculator gave as 135 degrees.
@PreMath Жыл бұрын
thanks ❤️
@j.r.1210 Жыл бұрын
Yes, this method is so fast and obvious that I'm surprised it wasn't presented as an option. Indeed, here it is THE option, since this is what trigonometry is for. If the goal is to mess around with rotating triangles, then the instructions should say, "Solve this easy trigonometry problem WITHOUT using trig."
Nice! Love your first method, Sir, you are great! φ = 30°; x + y > 3φ; sin(x) = 4/5 → cos(x) = 3/5 sin(y) = 7√2/10 → cos(y) = √2/10 → sin(x + y) = sin(x)cos(y) + sin(y)cos(x) = √2/2 → L1 = x + y = 9φ/2 L2 = x + y = √2/2 = 3φ/2 < 3φ ≠ solution or: φ = 30°; ∎ABCD → AB = CD = 5 = AF + BF = 3 + 2 = CG + DG = 4 + 1 = CS + DS = 1 + 4 BC = AD = 7 = AV + DV = 3 + 4 = AE + DE = 4 + 3 → ∆ AFE → EF = 5 shift AG → FS = 5√2 → ∆ FSE → FE = SE = 5 → SAB = y ↔AFE = x → EFS = 3φ/2 → x + y = 9φ/2 ∆ AFE = ∆ CSD → DS = AE = 4 ↔AF = CD = 3 → CS = EF = 5
@PreMath Жыл бұрын
Thanks dear ❤️🌹
@wackojacko3962 Жыл бұрын
I trust 2nd method over 1st method. ...but really appreciate both methods for solving. 🙂
@PreMath Жыл бұрын
Great! ❤️
@amarendrasingh7327 Жыл бұрын
This is really good question 😊 but I take less than 2 minutes to solve after seeing it Keep uploading more interesting questions videos 😊
@PreMath Жыл бұрын
Keep it up ❤️
@fsyi8395 Жыл бұрын
1st method is smarter we don't need trigonometry for special angles
@padraiggluck2980 Жыл бұрын
arctan(7)+arctan(4/3) = 135
@peterkrauliz5400 Жыл бұрын
That's the one!
@alster724 Жыл бұрын
Trigonometry (2nd method) is easier
@PreMath Жыл бұрын
Great ❤️
@Skank_and_Gutterboy Жыл бұрын
Arctangent is your friend.
@Copernicusfreud Жыл бұрын
Yay!, I solved the problem. I calculated the lengths of the sides of all the triangles. My first method was to use the cosine trigonometry functions, cosine x = adjacent/hypotenuse and cosine y = adjacent/hypotenuse and added the numbers. My second method was to use the law of sines to calculate angle x and angle y, and then add those numbers. Both methods gave me the answer in the video.