Find the Radius of the circle | (Important Geometry and Algebra skills explained) |

  Рет қаралды 27,214

PreMath

PreMath

Күн бұрын

Пікірлер: 47
@predator1702
@predator1702 Жыл бұрын
Fantastic solution and explanation 👍, thank you teacher 🙏.
@PreMath
@PreMath Жыл бұрын
Glad you liked it! ❤️ Thanks for your feedback! Cheers! 😀 You are awesome. Keep it up 👍
@skverma7278
@skverma7278 Жыл бұрын
There is a simple way. Draw a perpendicular from centre on the centre of chord. Angle at the centre will also be 45 degrees. Hence length of perpendicular will be 4 units. Radius will be root of (4*4+12*12)=√160 =12.65 units
@PreMath
@PreMath Жыл бұрын
Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@skverma7278
@skverma7278 11 ай бұрын
@@PreMath thanks sir.
@flesby
@flesby 9 ай бұрын
Quite an elegant solution. For those interested who did not understand your approach immediately: 1. From the middle of the circle, that is point O, draw the perpendicular to the chord CD, you may elongate it even further until it touches the circumference of the circle. 2. Observe that the perpendicular bisects the chord CD in half in the Point we shall call P. 3. Since we know that CE equals 16 and ED equals 8, the chord CD has a length of 24. 4. Therefor CP = 24/2 = 12 5. Since the perpendicular is just that, it hits CD at an angle of 90 degrees 6. You receive the triangle OPE. Since the angle in P is 90 degrees as stated before and the angle in E is given (45 degrees), the remaining angle in O must be 45 degrees as well. (45 + 45 + 90 = 180 degrees) 7. Since CP = 12 and ED = 8 the remainder that is PE must be 4 since 12 + 8 + 4 = 24 = CD. 9. Since the triangle OPE from Step 6 is an equilaterals triangle, we can conclude that PO = PE = 4 10. Draw the line OC. - Observe that OC is the radius. 11. Observe that OCP is a right triangle with a leg length of 12 for CP and 4 for OP, a right angle in P and the hypthenuse of OC which is the radius r. 12. Apply the Pythagorean theorem: 4² + 12² = r² = 16 + 144 = 160. => sqrt (160) = r = 12,649...something. => Rounded to 12,65. 13. DONE! I hope this clarifies the way @skverma7278 took, to those who did not see it at first glance. - I apologize in case anything i wrote sounds clumsy or cumbersome, since English is not my native tongue and I seldom talk/write about mathematical ideas in English.
@geoninja8971
@geoninja8971 4 ай бұрын
This is what I did - only took a minute or two, a nice simple pythagorean solve..... I appreciate the author's different approach though, there is always something to learn, and it is always cool to watch the exact solution flow from completely different methods....
@tombufford136
@tombufford136 Жыл бұрын
At a quick glance, A perpendicular from the midpoint, m, of a chord on a circle passes through the center of the circle. Then DM and CM = (16 + 8)/2 = 12. Forming a Right angled triangle OME, An isosceles triangle is formed OM = EM = 16 -12 = 4. Forming a right angled triangle, OMC. r^2 = 12^2 + 4^2 =160. Hence r= sqrt(160) = 12.65. The Radius of the circle is 12.65.
@marioalb9726
@marioalb9726 Жыл бұрын
Intersecting chords theorem: (r+x).(r-x) = 8 . 16 r² - x² = 8 . 16 r² - (8 cos45°)² = 128 r² = 128 + (8/√2)² r = 12,65 cm ( Solved √ )
@santiagoarosam430
@santiagoarosam430 Жыл бұрын
Llamaremos F al punto medio de la cuerda CD》 CE=16=CF+FE=[(16+8)/2]+4=12+4》FO=FE=4》Potencia de F respecto a la circunferencia =12^2=(r-4)(r+4)=r^2 -4^2 》r^2=160》r=4(sqrt10) Gracias y un saludo cordial.
@phungpham1725
@phungpham1725 Жыл бұрын
Drop the perpendicular OH to chord CD ad extend OH to complete the diameter. we have: H is the midpoint of CD so CH = DH =12 The small 45 degree right isosceles so OH=OE=4 ----> chord theorem: (R+4)(R-4) =sq12---->sqR -sq4 =sq12------> sqR= sq12+sq4= 144+16= 160 R=12.65 units
@michaelkouzmin281
@michaelkouzmin281 Жыл бұрын
Justt one more solution: Let x=OE; r=OA=OC. (r+x)*(r-x)=16*8 => r^2-x^2=16*8; (1) r^2=16^2-2*16*x*cos(D45)+x^2 => r^2-x^2=16^2-2*16*x*cos(D45); (2) Left sides of (1) and (2) are equal => 16*8= 16^2-2*16*x*cos(D45) => x=4*sqrt(2); let us put our found x into (1): r^2=128+x^2=128+32=160 => r= sqrt(160)=4sqrt(10).
@majidsetoudeh1654
@majidsetoudeh1654 Жыл бұрын
If you drop a perpendicular from O to the chord CD it will divide the chord in two equal segments and form a small right triangle OEH. The length of CH will be (16+8)/2 =12 and so HE=4. OH will also be 4 unit because OHE is a right angle triangle with two angles being equal to 45. The hypotheses OE will be 4 root 2. So AE=r+4root2 and BE=r-4root2, the rest of the solution will be as the rule of intersecting two chords like you explained resulting r=4root10.
@farzad1343
@farzad1343 Жыл бұрын
I'm completely agree with you. This is my first solution also, much simpler
@giuseppemalaguti435
@giuseppemalaguti435 Жыл бұрын
cosECO=12/r....16cos45=rcos(45-ECO)...r=√160.,.r=√928...credo sia corretta r=√160
@zdrastvutye
@zdrastvutye Жыл бұрын
the largest angle this solves without changing l1 and l2 ist 58 degrees 10 l1=16:l2=8:w=45*pi/180:y3=l1*sin(w):y4=-l2*sin(w):sw=.01:r=sw+y3 20 lx=(l1+l2)*cos(w):goto 50 30 x3=-sqr(r^2-y3^2)+r:dgu1=y4^2/r^2:dgu2=(x3+lx-r)^2/r^2:dg=dgu1+dgu2-1 40 return 50 gosub 30 60 dg1=dg:r1=r:r=r+sw:if r>100*l1 then stop 70 r2=r:gosub 30:if dg1*dg>0 then 60 80 r=(r1+r2)/2:gosub 30:if dg1*dg>0 then r1=r else r2=r 90 if abs(dg)>1E-10 then 80 100 print r:x4=x3+lx:mass=200/r:goto 120 110 xb=x*mass:yb=(y-r)*mass:return 120 x=r:y=0:gosub 110:circle xb,yb,r*mass:x=x3:y=y3:gosub 110:xba=xb:yba=yb 130 x=x4:y=y4:gosub 110:xbn=xb:ybn=yb:line xba,yba,xbn,ybn 140 x=0:y=0:gosub 110:xba=xb:yba=yb:x=2*r:y=0:gosub 110:xbn=xb:ybn=yb:line xba,yba,xbn,ybn 13.6006298 > run in bbcbasic sdl and hit ctrl tab to copy
@safwanmfarij3023
@safwanmfarij3023 Жыл бұрын
I solved it in another way I drew two lines from C to O and from D to O as a Radius. I named OB as X Then i used the law of cosines In the two triangles CEO & DEO to calculate the radius through the variable X Then i equaled the two equations to solve for X then i put the value in one of the two equations to solve for the radius
@AmirgabYT2185
@AmirgabYT2185 9 ай бұрын
At a quick glance as diametre and chord are equal to each other diametre will be 16+8=24 so the radius seems to be 12😅
@HappyFamilyOnline
@HappyFamilyOnline Жыл бұрын
Great explanation 👍 Thanks for sharing 😊
@soli9mana-soli4953
@soli9mana-soli4953 Жыл бұрын
Setting OE = X and radius = R and H the proiection of C point on the diameter we can write 2 equations first one with the intersecting chords theorem EB : ED = EC : EA => (R-X) : 8 = 16 : (R+X) the secons with Pythagorean theorem: CH² + HO² = OC² => (8√ 2)² + (8√ 2 - X)² = R² (being HEC an isosceles right triangle with hypotenuse 16)
@Geometri_asiklari
@Geometri_asiklari 11 ай бұрын
Merhaba, CD kirişine dik indirip, dikme kirişi 2 ye böler, dikten E ye kadar 4 olur, 45,45 ikizkenar üçgenden dikme 4 olur, sonra pisagor dan 4 ün karesi + 12 nin karesi eşittir r nin karesi, r kare 160 kök 160 olur🤓
@MrArcan10
@MrArcan10 10 ай бұрын
to find OE=x I used the theorem of cosines for triangles COE and DOE (got radius via x from both triangles to build the equation)
@timeonly1401
@timeonly1401 Жыл бұрын
Know OA = r. Let OE = a. Then AE = r+a and BE = r-a. By Intersecting Chords Thm, (AE)(BE)=(CE)(DE) (r+a)(r-a)=16*8 r² - a² = 128, r² = a² + 128 -- (1) Draw radius CO = r. Using Law of Cosines: r² = 16² + a² - 2(16)a cos(45). Subbing (1) into LHS & simplifying: a² + 128 = 256 + a² - 32a (√2 / 2) 0 = 128 - 16√2 a So, a = 128/(16√2) = 4√2. From (1) r² = (4V2)² +128 = 32 + 128 = 160 So, r = √160 = 4√10 . Done!
@janwendlandt3126
@janwendlandt3126 Жыл бұрын
√((16-12)²+12²) = 12.65 Explanation: If you plumb from the chord perpendicular to the center of the circle, so you hit it with 45 degrees to the horizontal diameter line. An isosceles triangle is created. The plumb point is exactly at the center of the chord, divides this as (16+8)/2 = 12. So the two legs are each 16-12 = 4 This is also the distance of the chord from the center of the circle. On the upper side of the chord you now have a right-angled triangle with legs 12 and 4, the hypotenuse of this triangle is the wanted radius: √(12²+4²) = 12.65
@dainiusb1114
@dainiusb1114 Жыл бұрын
Perpendicular from O to CD. CO^2=R^2=4^2+{(16+8)/2}^2.
@じーちゃんねる-v4n
@じーちゃんねる-v4n Жыл бұрын
OE=4√2 (r+4√2)(r-4√2)=r^2-32=8*16=128 ∴r^2=160 ∴r=4√10
@venelinarnaudov7416
@venelinarnaudov7416 Жыл бұрын
Nice problem and nice solution! I had it in another way. I drew a chord perpendicular to the diameter (AB) and passing through point E. Let the new chord crosses the arc CB in point M. The symetric point on arc AD should be N. It is obvious that EM=EN and that EM^2=16*8 or EM=8*sqrt(2) The angle CEM=45°. We apply cosin formula => EC^2+EM^2-2*EC*EM*cos(45°)=CM^2 => CM^2= 16^2+16*8-2*16*8*sqrt(2)*sqrt(2)/2 CM^2 = 16^2 + 16*8 - 2*16*8 CM^2 = 16*8 CM = EM => the triangle CME is orthogonal and equaliteral, where angle CME=90°, MCE=45° => CM||AB => EB = (AB-CM)/2 & OE=CM/2 Let OB=R and OE=x (=8*sqrt(2)/2 = 4*sqrt(2)) We apply the chord formula AE*EB=EM^2 (R-x)*(R+x) = EM^2 (R-CM)*(R+CM)=(2*CM)^2 R^2 - CM^2 = 4*CM^2 R^2= 5*CM^2 R = CM*sqrt(5) R= 4*sqrt(2)*sqrt(5) R = 4*sqrt(10)
@WaiWai-qv4wv
@WaiWai-qv4wv Жыл бұрын
Very thanks
@tombufford136
@tombufford136 Жыл бұрын
I am learning fast. Thales theorem, 2 tangent theorem, interior and external angle theorems .......
@じーちゃんねる-v4n
@じーちゃんねる-v4n Жыл бұрын
OE=4√2 distance O and CD is 4 OC=√(12^2+4^2)=4√(9+1)=4√10
@mathbynisharsir5586
@mathbynisharsir5586 Жыл бұрын
Wonderful sir
@PreMath
@PreMath Жыл бұрын
Thanks for your feedback! Cheers! 😀 You are awesome. Keep it up 👍
@jakalasi7540
@jakalasi7540 Жыл бұрын
Hi sir, May you please show us how to calculate the probability of winning a lottery. Thank you 🙏
@eoinrobson2725
@eoinrobson2725 Жыл бұрын
Genius!
@johnwindisch1956
@johnwindisch1956 11 ай бұрын
Did it using the radius chord properly
@Nothingx303
@Nothingx303 Жыл бұрын
❤❤❤❤❤❤❤❤❤❤❤veryyyy informative 👌 sir
@PreMath
@PreMath Жыл бұрын
Thanks and welcome ❤️ You are awesome. Keep it up 👍
@misterenter-iz7rz
@misterenter-iz7rz Жыл бұрын
Let OE be x, OA be r, then 16×8=(r+x)(r-x)=r^2-x^2, r^2=x^2+128, r^2=x^2+128=x^2+(16-sqrt(2)x)^2+sqrt(2)x(16-sqrt(2)x), 128=(16-sqrt(2)x)^2+sqrt(2)x(16-sqrt(2)x), 128=256+2x^2-32sqrt(2)x+16sqrt(2)x-2x^2, 16sqrt(2)x=128, x=128/(16sqrt(2))=8/sqrt(2)=4sqrt(2), r^2=32+128=160, r=4sqrt(10).😅
@JSSTyger
@JSSTyger Жыл бұрын
I think r=sqrt(4^2+12^2)=sqrt(160)=4sqrt(10).
@jhill4874
@jhill4874 Жыл бұрын
Gack! I had this up to the next to last step, but I subtracted 32 instead of adding it! Dang calculation glitch!
@ИванФортунов-й6о
@ИванФортунов-й6о Жыл бұрын
Why CF is equal 8?
@parthtomar6987
@parthtomar6987 Жыл бұрын
Because the sectors are congruent
@parthtomar6987
@parthtomar6987 Жыл бұрын
You can easily compare both of these
@hadialfuraiji6531
@hadialfuraiji6531 Жыл бұрын
Proving that two sectors match is not clear !
@misterenter-iz7rz
@misterenter-iz7rz Жыл бұрын
This is difficult. 😅
@PreMath
@PreMath Жыл бұрын
Thanks for your feedback! Cheers! 😀 You are awesome. Keep it up 👍
Which team will win? Team Joy or Team Gumball?! 🤔
00:29
BigSchool
Рет қаралды 15 МЛН
Triple kill😹
00:18
GG Animation
Рет қаралды 18 МЛН
Can you solve these geometry problems?
9:46
MindYourDecisions
Рет қаралды 105 М.
Garry Kasparov vs Anatoly Karpov | Linares, 1992
19:58
Chess Star
Рет қаралды 60
Circle Theorems - GCSE Maths Higher
20:02
HEGARTYMATHS
Рет қаралды 1,5 МЛН
Indian l Olympiad Math Algebric Problem l Tricky Solution for x?
12:38
Which team will win? Team Joy or Team Gumball?! 🤔
00:29
BigSchool
Рет қаралды 15 МЛН