Finding Basis for Column Space, Row Space, and Null Space - Linear Algebra

  Рет қаралды 153,404

Drew Werbowski

Drew Werbowski

Күн бұрын

Пікірлер
@tony-hz4gg
@tony-hz4gg 10 ай бұрын
Bro you're a goat I never comment but u made everything so much easier to understand than the other tutors who just yap about definitions, but you explain the intuition. Love it def gonna start watching u more for linear.
@DrewWerbowski
@DrewWerbowski 8 ай бұрын
Thank you so much for your comment. Are there any linear algebra topics you would like to see?
@Ahmed-yo7gb
@Ahmed-yo7gb 8 ай бұрын
​@@DrewWerbowski Determine if U is or not a subspace with justification. Finding eigenvectors and eigenvalues and diagonalization. Gram-Schmidt Orthogonalization Algorithm and computing a projection Finding a basis for a vector space Finding the matrix that describes the linear transformation (9.1). Least Squares Approximation Singular Value Decomposition Proof of an important Theorem
@DrewWerbowski
@DrewWerbowski 8 ай бұрын
@@Ahmed-yo7gb thank you for the comprehensive list! Many of those topics I already have videos on my channel, but I will add some of the others to my list
@hagopderghazarian326
@hagopderghazarian326 Жыл бұрын
I never comment on videos but you my friend just aced this chapter. Khan academy complicates it for no reasons. Great job
@DrewWerbowski
@DrewWerbowski Жыл бұрын
Appreciate the support! Thank you!
@rustomcadet3533
@rustomcadet3533 Жыл бұрын
Thank you for this; you makes things much easier to understand.
@semkiz1133
@semkiz1133 Жыл бұрын
omg i literally have my final tmrw and u just explained the concepts i've been dreading the most in the most understandable way ever omfg ur the goat
@DrewWerbowski
@DrewWerbowski Жыл бұрын
Thank you! Hope your final went well!
@art.sthetic1615
@art.sthetic1615 Ай бұрын
i also have my final tomorrow 😂😂
@semkiz1133
@semkiz1133 Ай бұрын
@@art.sthetic1615 omgg how did it go!
@thethunderrr07
@thethunderrr07 Ай бұрын
@@semkiz1133 answer btuh
@weewuwuu
@weewuwuu Ай бұрын
@@semkiz1133 HOW DID YOUR FINAL GO
@AdrenalStorm
@AdrenalStorm Жыл бұрын
OMG THANK YOU SO MUCH. You are a life saver. I was having so much trouble with a question on MyOpenMath and now I understand 😭
@pharaohscurse
@pharaohscurse Жыл бұрын
Thank you so much. Finally understood the concept perfectly
@SyedNazeeb-s7w
@SyedNazeeb-s7w 2 ай бұрын
I haven't seen such an easiest way of solving maths problems.It seems like u r playing on ur computer. By the way Brother ur vocal delivery is truly captivating
@FarheenQureshi-ei9jv
@FarheenQureshi-ei9jv 8 ай бұрын
best explanation of topic .... finally i understood the topic ... it is simple but our teacher make it very hard.
@TumuhairwePeace-we6zd
@TumuhairwePeace-we6zd Жыл бұрын
Thanks for good explanation,may God bless you abandantly
@volken54
@volken54 5 ай бұрын
Great! Thanks for this simple and intelligent explanation!
@BHAWISHGOYAT-p4t
@BHAWISHGOYAT-p4t 2 ай бұрын
you made it much easier and i can say you made it more easy than the professors of india's highest ranked iit
@alexanderstrauss6282
@alexanderstrauss6282 3 ай бұрын
needed this, thanks for creating this. :)
@moshiurrahman9677
@moshiurrahman9677 2 жыл бұрын
Excellent presentation. Thanks. You presented it in consideration of a homogenous system. Could you please add some explanation of this topics in a non-homogenous system? You are a great teacher!
@maxpercer7119
@maxpercer7119 9 ай бұрын
interesting you say that applying a linear transformation is 'shifting space'. So that is one way to think about it, as a mapping between two spaces , the departure space and the arrival space, or as transformation of the departure space. A linear transformation is equivalent to matrix multiplication, and for the null space we are looking for solutions to A*x = 0 , where x is an n x 1 matrix of "solutions" and A is a given m x n matrix. When x varies you have a map from R^n -> R^m , defined by x -> A * x .
@nattavich2780
@nattavich2780 2 жыл бұрын
Thank you for teaching. It helps me to solve my homework. And if you don’t mind,please you will suggest the book of Linear Algebra.
@ElifArslan-l9g
@ElifArslan-l9g 2 жыл бұрын
thank you so much! btw your voice is super cool
@cerberuss8133
@cerberuss8133 11 ай бұрын
thank you! my endterm is tomorrow, u helped a lot!
@jojo_099-4
@jojo_099-4 2 ай бұрын
Can you explain how can I know if the vectors are free or not? how can i know that they're not equal to 0 and they're linearly dependent? it's as what is said in 10:42 I really can't figure it out, i still have difficulties😭😭
@maxpercer7119
@maxpercer7119 9 ай бұрын
11:22 I think there is a mistake, it should be the span of {v1, v2, v3, v3} = span {v1, v2} , not span {v1, v2, v3 } = span v1, v2, since there are four vectors we started with in Col(A).
@syedabubaker1389
@syedabubaker1389 9 ай бұрын
It was an example {v1, v2, v3, v3} = span {v1, v2} stands correct due to {v1, v2, v3 } = span {v1, v2} being correct
@titaniumx5471
@titaniumx5471 10 ай бұрын
explained it better than my prof and my textbook combined. appreciate it man thank you
@cornmasterliao7080
@cornmasterliao7080 Жыл бұрын
so for column space I should use the corresponding column vectors in the original matrix. for row space I should use the row vectors in the RREF matrix?
@kushaal1607
@kushaal1607 10 ай бұрын
Yes, correct
@matthiasd2023
@matthiasd2023 Жыл бұрын
you are a legend thank you so much
@ColeWagner-l5j
@ColeWagner-l5j Жыл бұрын
Hey thought the video was great but I think your definition on independence may be off. A matrix is independent if the subsets don’t contain other subset variables. Your first problem you said was independent was actually dependent even though it spanned
@jojo_099-4
@jojo_099-4 2 ай бұрын
wait wasn't it independent? since the number of columns after the REF are more than the rank of the matrix?
@promilaize
@promilaize Жыл бұрын
Thanks for making it understand.
@abdelazizamr33
@abdelazizamr33 Жыл бұрын
great video you deserve more likes and subscribes
@bunkeredpond7249
@bunkeredpond7249 2 ай бұрын
your the goat bro
@AsandeGumede-yx9vc
@AsandeGumede-yx9vc 8 ай бұрын
youre so good man!
@henrytzuo8517
@henrytzuo8517 10 ай бұрын
THANK YOU!!😀😀😀
@SameerSiddiqui-c6e
@SameerSiddiqui-c6e Ай бұрын
my goat
@mirmubasher9597
@mirmubasher9597 4 жыл бұрын
will the dimensions of basis of col(A) and row(A) always be the same? Does dimensions of basis of null(A) hold any significance with col(A) and row(A)? Thank you! you're blessed.
@natedominion5432
@natedominion5432 2 жыл бұрын
Dimensions of Row(A)=Col(A) and Dimensions of Row(A) + null(A) = # of columns
@sohamnandi5457
@sohamnandi5457 Жыл бұрын
If I perform row operations on a matrix, does it affect its column space? I am asking this because I used to perform row operations on the transposed matrix so that they are basically column operations.
@theultimate2345
@theultimate2345 6 ай бұрын
On a matrix after application of row operation the row space stays the same while column space changes , and for application of row operation on its transpose keeps it's column space same but changes row space
@sohamnandi5457
@sohamnandi5457 6 ай бұрын
@@theultimate2345 got it, thanks a lot!!
@Kage1128
@Kage1128 Жыл бұрын
would be cool if you shared the onenote document so that we could save it for notes :)
@DrewWerbowski
@DrewWerbowski Жыл бұрын
You'll learn more efficiently if you listen, understand, then write notes in your own way :) Good luck!
@LenaGreen3
@LenaGreen3 2 ай бұрын
Good video
@samueldarenskiy6893
@samueldarenskiy6893 Жыл бұрын
Wouldn't the column space be the set of all column vectors, so literally every column is in the span. Whereby the basis is all the literally independent columns
@prasanjeetnayak8253
@prasanjeetnayak8253 Жыл бұрын
Yes
@anirbandhar1
@anirbandhar1 Жыл бұрын
Column space is the linear span of all independent columns of the matrix. So sure, it contains all the columns in the matrix, however its not limited to it.
@AkashSingh-vm8rd
@AkashSingh-vm8rd 2 жыл бұрын
Thank you, buddy
@sevdedundar2334
@sevdedundar2334 7 ай бұрын
thank you so much.....
@daphneeroy6623
@daphneeroy6623 Жыл бұрын
Can I write the basis row with the original matrix like we did with the columns ? Thanks
@armisol00
@armisol00 Жыл бұрын
Same question have exam in 5days
@theultimate2345
@theultimate2345 6 ай бұрын
Yes you can
@viral724pathak
@viral724pathak 3 жыл бұрын
please suggest any book from where i can get all these things. thnx
@sachininirmani4791
@sachininirmani4791 Жыл бұрын
thank you!
@briannguyen5057
@briannguyen5057 2 жыл бұрын
thanks!
@aminamehboob4068
@aminamehboob4068 2 жыл бұрын
Thank you so much sir
@davlatbekkobiljonov911
@davlatbekkobiljonov911 Жыл бұрын
thanks
@Triadii
@Triadii 4 ай бұрын
but the question is asking for a column space of a polynomial. There isn't even a matrix given in the question.
@vortexx3028
@vortexx3028 Ай бұрын
GeForce Game Ready Driver is AVAILABLE 🗣🗣🗣🗣‼‼‼‼‼‼
@abdur._.sharif
@abdur._.sharif 3 ай бұрын
i luv u
@abdur._.sharif
@abdur._.sharif 3 ай бұрын
plz replace my linear teacher 🙏🙏🙏
@garytan4423
@garytan4423 11 күн бұрын
linear teacher 😂😂😂
@advikace8847
@advikace8847 2 жыл бұрын
Video was lil bit helpful
@AidanMarley-jg9iv
@AidanMarley-jg9iv 2 ай бұрын
you are jesus
@ВикторияИльина-ю4з
@ВикторияИльина-ю4з 2 жыл бұрын
what is your instagram..
@kaustubhlande5568
@kaustubhlande5568 Жыл бұрын
Can I write the basis row with the original matrix like we did with the columns ? Thanks
@armisol00
@armisol00 Жыл бұрын
I have the same question and exam in 5days
@kushaal1607
@kushaal1607 10 ай бұрын
no you can't, i don't know why, but i'm sure you can't write the basis row with the original matrix like we did with the columns
@rubengabeaditya598
@rubengabeaditya598 10 ай бұрын
@@kushaal1607 how about making the matrices to the transpose form and then you take the original vector as row space after finding the rref. Is it still wrong?
@theultimate2345
@theultimate2345 6 ай бұрын
​@@kushaal1607 you can write it that way thought
@DirkdeZwijger
@DirkdeZwijger 3 ай бұрын
@@kushaal1607 in the video (14:39) he says that row(A) of the original matrix A is equal to the row(A) of the RREF form, so you can use both. Only for columns it doesn't work, as you might end up the standard basis vectors, which is not per definition the same as the basis of col(A) of the original matrix A
@seacheuk5665
@seacheuk5665 2 жыл бұрын
thanks!
What is a Linear Transformation? - Linear Algebra
11:02
Drew Werbowski
Рет қаралды 6 М.
Order, Dimension, Rank, Nullity, Null Space, Column Space of a matrix
14:04
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 18 МЛН
Nullspace Column Space and Rank
20:59
Dr Peyam
Рет қаралды 86 М.
How to Easily Find the Basis of the Span of Vectors  - Linear Algebra
13:40
The deeper meaning of matrix transpose
25:41
Mathemaniac
Рет қаралды 401 М.
Independence, Basis, and Dimension
13:20
MIT OpenCourseWare
Рет қаралды 423 М.
The Null Space & Column Space of a Matrix   | Algebraically & Geometrically
10:41
The Column Space of a Matrix
12:44
MIT OpenCourseWare
Рет қаралды 138 М.
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН