You explained in 25 minutes what I have been confused about for the past 200 minutes of my class. Amazing
@ThinkPositive0010 жыл бұрын
Before 0% understood
@jonathansimmons33447 жыл бұрын
ThinkPositive00 middle 50% understood.
@PhysicsMath5 жыл бұрын
Well
@ChristianRoland74 жыл бұрын
nice
@neelparekh17592 жыл бұрын
Are you a professor now?
@user-co4rr8cy9v11 күн бұрын
@@neelparekh1759 Are you a professor now?
@CodSock8 жыл бұрын
Anybody else have their linear algebra exam coming up too? haha you saved me once again khan academy, very clear and easy to follow.
@zoomboy66765 жыл бұрын
Me
@colesmith5522 Жыл бұрын
me
@anindochoudhury1199 Жыл бұрын
yes :)
@pawaninfo70078 ай бұрын
Tomorrow 😢
@ms_nana4 ай бұрын
Yes
@ThinkPositive0010 жыл бұрын
After 100% understood
@sam20265 жыл бұрын
ThinkPositive00 lol, you have two separate comments. old KZbin was something else
@kozukioden24065 жыл бұрын
I love how both comments have the same exact number of likes ! Math students are so precise lmao
@hugoirwanto99054 жыл бұрын
@@kozukioden2406 wow 5 months later and its still have the same number of likes
@shawnjames32424 жыл бұрын
@@hugoirwanto9905 It still has the same number of likes 223. How far will it go? I am curious...
@vishakamohan53364 жыл бұрын
@@shawnjames3242 Yes. It's 259 on both now
@ChristinaWahlquist-h5zАй бұрын
Thank you! -Christina, 48 year old mother of 7 children finishing a Secondary Math Ed I started 30 years ago. :) Your solution was clear and organized. Awesome!
@dripminic5 жыл бұрын
A faster way to find the basis for the column space is to rref and then take the column vectors with pivots
@BrainGainzOfficial5 жыл бұрын
True!
@ozzyfromspace5 жыл бұрын
dom you're right! I noticed it too and had an aha! moment. Life of a math junkie lol
@fodaseodinheiro4 жыл бұрын
check this kzbin.info/www/bejne/bqCYdKCcpcqibMk
@alinac55124 жыл бұрын
Ty! Thats what I was thinking
@weirdcuriosity36903 жыл бұрын
Yeah
@みかちゃん-k4r3 жыл бұрын
I'm just gonna say again, I don't really understand what my professor said but I'm able to understand the explanation from this video. It really helped me a lot, no matter I'm gonna fail this subject or not, thank you for making this video.
@4sky13 жыл бұрын
2am in morning..."ill let you go for now" "yes!! im free! i can go to sleep!"
@ozzyfromspace5 жыл бұрын
The number of pivot variables = number of independent basis vectors that make up the column space of A. Very insightful, Sal! It took me a while to process but now I get it ☺️
@certifiedwavy10 ай бұрын
thanks, i do not why i could not understand this but your video did the trick!
@unnamed199213 жыл бұрын
OMG YOUR A GENIUS. I CAN'T BELIEVE I LEARNED THAT.
@Lolsashalol5 жыл бұрын
i've got a feeling that i'll get my bachelors in Mech Engineering with this channel
@marekjanik99623 жыл бұрын
COVID-19: Oh no you won't!
@lozy4973 жыл бұрын
same
@khanacademy15 жыл бұрын
That's not exactly giving me the best incentive to finish
@deryakarabulut78055 жыл бұрын
Hello, is there not a mistake done in the first place when you were subtracting 2 times row 1 from row 2? You said so but you subtracted row 2 from 2 times row 1 and it changed all the result. I try to understand linear algebra and everything coming up with it so I may be wrong but this is opposite to what I learned from MIT open courseware and what you said in this very video. Please clarify this point for me or I ill get lost!
@ryansuber62533 ай бұрын
I understood more in this 25-minute video than in my lecture on the topic today........ Thank you for this video
@theekags7 ай бұрын
thank you so much i have a final in 4 hours and this made everything simpler
@rohhanbhardwaj6 ай бұрын
how was it?
@cjames900114 жыл бұрын
this 25 minute lecture puts 3 weeks of lecture in class to shame, very helpful
@tejasghodkhande33814 жыл бұрын
Very Nice explanation!
@reypope1913 жыл бұрын
You're saving my linear algebra grade, THANKS!
@Novice08254 жыл бұрын
I assume you've graduated by now!
@liliashaymuratova6729Ай бұрын
It's fantastic! So straight-forward. Thank you so much!
@GbyP10 ай бұрын
This man has saved so many people's grades, about to take my linear algebra midterm rn 😅
@artindesign25653 жыл бұрын
Ohhhhhhhh thankxxxx a lot....!! Finally I understand the difference of null and column space and it works for creating basis.
@EwaldBE4 ай бұрын
I have always heard good things about Khan Academy and it definitely checks out. This video explained a topic I have been struggling with clear as day.
@NotmyYTchannel15 жыл бұрын
OMG... I was just on this studying this topic right now... and you posted this up like 10 minutes ago... WOW!!
@certified_vg22003 жыл бұрын
how old are you now?
@NotmyYTchannel3 жыл бұрын
@@certified_vg2200 12
@NotmyYTchannel3 жыл бұрын
@@certified_vg2200 jk 30
@bunstie52083 жыл бұрын
@@NotmyYTchannel wow still active 8)
@NotmyYTchannel3 жыл бұрын
@@bunstie5208 yup og
@benjaminjongepier682610 жыл бұрын
I love you Khan Academy
@oliverandamms7382 ай бұрын
thank you !! i know im not alone when i say that! this cleared everything up so neatly
@supersonic1746 жыл бұрын
so if there are free variables in the reduced row echelon form, does that mean that it is linearly dependent
@BrainGainzOfficial5 жыл бұрын
Yup!
@patrickneal92882 жыл бұрын
this saved my life
@devashishbhake31733 жыл бұрын
this video is pretttttyyyyyyy old yet very relevant in 2021......
@RawwestHide9 жыл бұрын
khan is a god
@drrojas13 жыл бұрын
KHAN ACADEMY in HD , aaawwww yea!!
@MrCalhoun55614 жыл бұрын
I think it makes a bit more sense to apply Elementary Row Operations upon the Matrix before figuring out the Column Space. You'll see already before if the system of equations collapses the vector to a line, plane or 3d hyper-plane. It also has then a nicer form to check for the results of the Rank-nullity theorem.
@ArthurTaylor Жыл бұрын
So when the determinent is zero, the system of equations collapses down to a line?
@vishnus25674 жыл бұрын
When we do the echelon reduction, do we need to make sure that the pivot elements need to be 1?
@Lucas-zd8hl4 жыл бұрын
Yes or else we can't use it
@tejasghodkhande33814 жыл бұрын
yes
@ccuuttww6 жыл бұрын
the last part may not necessary to find the basis u can just pick it form the reduced encholen form which have pivot in each column in this case it is column 1 and 2
@zoomboy66765 жыл бұрын
But he just proved that columns 1 and 2 are sufficient for finding the basis
@hrzbltnrd9 ай бұрын
thank you so much, finally a video i can understand
@shriram61232 жыл бұрын
Very nicely explained
@rajaabubakar41047 жыл бұрын
this video should be of maximum 5 mins....but u are awesome in extending videos
@vincelunceford11 жыл бұрын
yeah i totally agree... but he tries to prove it more theoretically
@shameerrishad41892 жыл бұрын
I have a query: are pivot variables aka dependent variables & free variables aka independent variables?
@Liaomiao12 жыл бұрын
are pivot variables always the linearly independent ones? can't you write the pivot variables in terms of the free variables here as well? ack it's kinda coming together for me... thx khan
@aryankumarprasad15743 жыл бұрын
are pivot variables always the linearly independent ones- Yes
@rkishei12 жыл бұрын
I wouldn't say it's so much over-explanation rather than thinking out loud. At least for me, this helps, not because I don't know how to subtract (subtraction being one of many things he 'over-explains'), but because I can keep track of every assumption he's making.
@ArthurTaylor Жыл бұрын
How did I pass this subject? This is so confusing 😭
@Europemaster14 жыл бұрын
@khanacademy he is probably being sarcastic or just a throll, you are doing amazing job with your amazing explanations, dont let that anonymous idiots make you lose strength to carry on. Have a nice day.
@TBV12113 жыл бұрын
I think you made a mistake on your second computation. -2 x Row 1 added to the remainder of the entries in Row 2 should give -1, 2 and 1, not 1, -2 and -1.
@hasunsri11 жыл бұрын
most probalably....self study...........or.........one good teacher(lecture) who knows the subject deeply....not by just passing the exams.....by feeling maths....
@Clodidi13 жыл бұрын
This doesn't actually teach you what a null space is.. this basically teaches you some trick to figure out the basis of a subspace.... waste of 20 mins.
@majed19112 ай бұрын
There is a separate video for that
@ThePearReviews11 жыл бұрын
Its easier to say that the pivot columns of A form a basis for Col(A) :P
@manpreetsaggi78611 жыл бұрын
It's not you, it's just the human nature that can't accept the truth and the truth is majority of the teachers here don't care if the student learns or not.(not all cuz I have some great Profs at my school). But most teachers here just work for their pay check. That doesn't happen in India. People care more about each other. Now this guy explaining everything for free, that's the kind of spirit we need in teachers her. I don't want them to teach for free but just care more than they do..
@jacobm70266 жыл бұрын
Mind. Blown.
@TDefton5 жыл бұрын
So in order for the column space to be Liniarly independent, the rref would have to be the identity matrix, right?
@Asdun774 жыл бұрын
You explained it very easy thank you, god bless you
@arjunselvam7 Жыл бұрын
This is the single most redundant way to explain that pivot variables determine the column space but I finally got it
@linkmaster9595 жыл бұрын
Can the basis of the column span be the columns with pivots in rref?
@BrainGainzOfficial5 жыл бұрын
Yup!
@atharvajadhav23194 жыл бұрын
But why did he referred pivots from original one but not from rref?
@SaeedRanjbar10 жыл бұрын
anaaaaaaaaaaaaaaaaaaaazing video ! Neat Clear , thanks !
@oneinabillion6545 жыл бұрын
Took me 1 day to understand span subspace basis null space column space and then remembering it
@JeremyLeeTW7 жыл бұрын
great for the review of basis, null space and column space for a matrix !
@dezebarrow36633 жыл бұрын
Even though i finished this video, i play it back just to hear his voice :'(
@kenikozo13 жыл бұрын
ITS MAGIC!!!
@hansgodoy64345 жыл бұрын
thank u very much
@梁廷睿-t5k3 жыл бұрын
Great!
@콘충이4 жыл бұрын
Thanks!
@roelheirman83989 жыл бұрын
You just saved my ass :)
@pianoforte17xx484 жыл бұрын
Your brain*
@iczyg11 жыл бұрын
Can a vector be in both a the Null space AND the Column space of some set of vectors? Or is it one or the other...?
@GaryTugan3 жыл бұрын
awesome vid
@manpreetsaggi78611 жыл бұрын
Dear friend he is talking about the education standards of the US which are very very low as compared to other countries. What you are given in 12 grade her, I was given that stuff in 9th in India
@javierzanet14 жыл бұрын
Well because you have 4 vectors in R3 so you can tell that they are linearly dependent.
@PrinceFX15 жыл бұрын
AWESOMENESS !!!
@akshitajohar162 жыл бұрын
Where are next videos , please tell can't find them
@MohamedElsheikh2212 жыл бұрын
The basis of Nul(A) is the same spanning set of Nul (A)... I think you forget to say that!
@tugbamacit42246 жыл бұрын
adamsın adam!! (trying to get it for a day long. finally you made it. thanks in advance.)
@aaad11008 жыл бұрын
Curious, when you first proved that X3 & X4 were "free" variables, is that enough evidence to consider those vectors redundant and exclude them from the final linear independent set, or was that just coincidence?
@faisaladel50348 жыл бұрын
+aaad1100 It's even more than that ,seeing that in the reduced echelon form that the non zero rows are just 2 ,and the number of columns (variables) is 4 ,then you should figure out there is two additional variables or additional redundant vectors.
@alepov12 жыл бұрын
thanks
@lemyul5 жыл бұрын
thanks sal sal
@martinmarmo8 жыл бұрын
Very enlightening video! One question though. What software do you write on? I'd love to take notes in class using the same method
@SouthernHadoken6 жыл бұрын
there easier way to figure out the basis. it is the original columns that correspond to the pivot columns in its RREF.
@human.earthling13 жыл бұрын
haha, at 0:06 ...CURL over... ..really INTEGRATE everything...
@vatcherc13 жыл бұрын
THANK YOU!!!!
@manpreetsaggi78611 жыл бұрын
An average kid here need a calculator, an equation sheet for an exam and it's provide, where as any of that stuff in Indian schools is strictly prohibited. I am not talking about the small schools in the poor villages. I am talking about the prestigious schools which we have many
@imbsalstha12 жыл бұрын
thanks again ! well ,i'm gonna forget mine LA teacher but not you.
@iLoveTurtlesHaha7 жыл бұрын
1:34 "We don't know that these are linearly independent" ... yes we do, there are 4 vectors in R3, one of them will be redundant, therefore those vectors are linearly dependent. Also, after you row reduced, you just needed to see which columns had a pivot point then go back to the original matrix and take those columns and they are the basis vectors for Col(A). ... eg. there was a pivot position in the columns for x1 and x2, the basis vectors were eventually determined to be column 1 and column 2 of the original matrix. Make sure you understand what is going on in the video though, it's really important that you do.
@andreashaugstvedt80765 жыл бұрын
What happens if you have a column consisting of only 0's, regarding the null space basis? Wouldn't that mean that the respective x-variable is neglectable?
@meghnadsaha246910 жыл бұрын
YEA IT IS MOST IMPORTANT FPR EVERYONED , BY THIS WAY I THIK ANYBODY CAN LEARN MATH S BIN SIMPLE WAY
@orpheuspericles95827 жыл бұрын
shouldn't the no. of basis vectors be equal to the dimension of the subspace??
@vishalgoel66907 жыл бұрын
Orpheus Pericles No, because here you can see that he put 0 for x3 while proving that v4 is redundant and put 0 for x4 while proving that v3 is redundant. So, we can get rid of both v3 and v4. Also, the basis of a subspace need not span all the points in the graph because the span of the subspace can be limited. For example, here, the span is limited to a plane in R^3. What we can say is that the number of vectors in basis need not be greater than the order of dimension.
@ahmeddesoky84347 жыл бұрын
For the point you mentioned @Vishal Goel, " the basis of a subspace need not span all the points in the graph ".... I think it is not as per the definition Sal gave in a previous video that the basis is the minimum set of vectors that spans the subspace ! Also, till now I am not totally convinced how the number basis vectors of a subspace to be less than the subspace order !?
@ahmeddesoky84347 жыл бұрын
The next video explains and visualizes that point. Thanks !
@bakhtiareng.63925 жыл бұрын
SALL KHAN is proud of MUSLIMS
@DrinkedTooMuch2 жыл бұрын
So we have weird exercises to do as homework (tho we havent even done ANY exercises on this topic, all they did was throw empty definitions at us and expect us to be geniuses) where it says "Which vectors(b1,b2,b3) are in the column space of A?" A= 1 1 1 1 2 4 2 4 8 And thats all the info we have. How does one solve it?
@Warrimonk14 жыл бұрын
Very helpful thanks, too bad I find it impossible to stay away in any sort of linear algebra lesson *yawn*
@VicfredSharikver15 жыл бұрын
nice
@rituparnameshram93973 жыл бұрын
who are those ultra genius 93 people who disliked this video?
@bojanglessr311 жыл бұрын
to moeb32, he said he was doing 2r1-r2 not r2-2r1...
@pianoforte17xx484 жыл бұрын
*nullsapce*
@yuanguolang53528 жыл бұрын
any one could help me to find the basis of left nullspace?
@unfragger15 жыл бұрын
I LLOVE YOU
@cvpadre11 жыл бұрын
Thanks for the video. Hope you keep up the good work, which obviously you are =0)
@teomazzaferro704012 жыл бұрын
just because people are in linear algebra doesnt mean they can follow simple calculations, there's some people in my class that are really dumb
@conner18324 жыл бұрын
"Nullsapce" in the thumbnail :^)
@Sythesia6 жыл бұрын
Null Sapce
@realvideosrv18794 жыл бұрын
At the end, didn't he mean to say column space of A "C(A)" ? Instead of column span of A?
@Knot2goodAtIt10 жыл бұрын
I feel like he never missteps, but this was definitely the harder way to find the column space...why not just out it in a matrix and get the leading ones? Maybe that's what you did, but it definitely seemed more consuming. I had to stop watching the video before I got confused...
@OmegaCraftable9 жыл бұрын
There wasn't a clear goal that he was trying to get to. He wasn't doing all these steps just to get to the final goal of the linearly independent set of vectors spanning the column space of A. You need to interpret this video as being more of a exploration in the the relationships between a matrix, it's null space and it's column space, rather than an explicit problem solving exercise.
@qotyop11 жыл бұрын
X3 is freeee
@louaialfaori797811 жыл бұрын
a Gizzillion Times agreed!!!!!
@amdperacha11 жыл бұрын
Right... that's exactly what i meant. And, I'm very curious what your source is for that statistic, cuz I sure as hell find it questionable how you came to that conclusion. PS I'm not american, so I could care less even if you wanted to offend them.