To be honest, l have watched several videos on this topic but this one is well explained. Keep this good work high.
@RexxSchneider3 жыл бұрын
Where possible, use Fermat's little theorem to reduce the amount of work, especially if you have a large modulo base. a^(p-1) is congruent to 1 mod p where p is prime and a is not divisible by p. So, for example, 2^35 mod 7 can make use of the fact that 2^6 is congruent to 1 mod 7. Therefore 2^35 = 2^6^5 * 2^5 which is congruent to 1^5 x 32 mod 7 which is congruent to 32 mod 7 which is congruent to 4. In the second example you can say that 3^4 is congruent to 1 mod 5 without working through all of the powers to find the one that is congruent to 1. This could save a lot of effort if you're faced with something like 2^100 mod 97.
@vanilla-vx3pd3 жыл бұрын
Absolutely aweome, thank you so much for this :)
@soumya11003 жыл бұрын
Many thanks from India
@goddivine8804 Жыл бұрын
Kal meri exams hai🤥 these are good for practice
@abhijitmalik87652 жыл бұрын
Thank you so much, I'm from India
@justinernest2363 Жыл бұрын
can you give some explanation with regard to equivalence classes. Like what exactly is the background of the manipulation from the bigger number to the smaller number ie 2020 to 4?
@raginikumari89793 жыл бұрын
Helpful
@rholanangelob.lopena51903 жыл бұрын
Sir how did you get the exponent 11 in 7:30
@sefer-nv6cn2 жыл бұрын
35 - 2 = 33 33 / 3 = 11
@sharoncadag94762 жыл бұрын
can you explain more how did you got those remainders? thanks
@thazexperiments57343 жыл бұрын
How can do it for when 7^103 is divisible by 25
@numberexplorerchannel18273 жыл бұрын
7^103 mod 25 103 mod 25 = 3 mod 25 Thus, the same as saying 7^3 mod 25 Then, 7^1 mod 25 = 7 mod 25 7^2 mod 25 = 49 mod 25 = 24 mod 25 7^3 mod 25 = 343 mod 25 = 3 mod 25 7^4 mod 25 = 2401 mod 25 = 1 mod 25 7^103 mod 25 = (7^4)^25 * 7^3 mod 25 = (1)^25 * 343 mod 25 = 1 * 343 mod 25 = 343 mod 25 = 3 mod 25 Thus, the remainder is 3. Thanks for commenting
@henrilaurent14112 жыл бұрын
@@numberexplorerchannel1827 hi, could you provide the explanation for the answer because I find 18 as a remainder?...and I am probably wrong but would like the thought process...thank you
@uyiosemwenkhae8495 Жыл бұрын
Many thanks to your explanation. Question 1 is a bit complicated as 19^9 gives remainder of 0. None gives remainder of 1 b4 this. So I terminated there. Q1= 0 Q2= 5 my answers
@tabhinavreddy17254 жыл бұрын
superb explanation tq
@Ranisa12 Жыл бұрын
How to find remainder 10^50 is divided by 7? Please help
@Quintessential.96 Жыл бұрын
How do you get the 114 pls?
@Spiritual_awakening863 жыл бұрын
Remainder when 2016 raise to power 2018 is divided by 11 is.....5
@brizzxd17932 жыл бұрын
Acha
@sirkeitv053 жыл бұрын
well explained Sir 💪❤️👏 thanks for this video hope you would take some more helpful videos regarding Number Theory sub ❤️
@mariefedeguzman4402 жыл бұрын
How can i get the remainder when 2²⁰⁰ is divided by 5
@ivayloivanov5766 Жыл бұрын
Can you help me with this, please: x ≡ 2 (mod 11) x ≡ 9 (mod 15) x ≡ 7 (mod 9) x ≡ 5 (mod 7) ?
@golloramesh16373 жыл бұрын
I honestly won't understand🙏
@sanjaysurya68402 жыл бұрын
Mathematics is the father of ______. Fill in the blank 👨🏫
@tengisjargal69868 ай бұрын
1) answer 1 2) answer 5
@cheche55173 жыл бұрын
What is the given in no.2 TRY THESE?
@pksingh31262 жыл бұрын
The answer, Q.1) 01 Q.2) Trying..
@rajwantkaur21583 жыл бұрын
I'm getting remainder 3 when I'm diving 4 by 15. Please help me out.
@tebogomodingoane39673 жыл бұрын
me too
@tebogomodingoane39673 жыл бұрын
did you get a solution
@michaelwilliams9863 жыл бұрын
You’re dividing 15 by 4 not 4 by 15
@maitreyo_das3 жыл бұрын
If you divide 15 by 4 then obviously remainder is 3 but 4/15 gives 4 (explanation-> 17/15 gives you remainder 2 coz 17= 15x1 + 2, 33/15 gives remainder 3 coz 33= 15x2 + 3, similarly 4/15 gives remainder 4 coz 4=15x0 +4)