How would you deal with a graph that is a 2nd order response?
@olayomateoreynaud99564 жыл бұрын
great video! How would you do it for a second-order system?
@NitBeanTheMachine8 ай бұрын
Wait - if you're taking the inverse Laplace of Y(s), this would make the output y(t) (output varying with time) which was already given in the initial graph. How are you getting that y(t) is actually a deviation from the steady state value?
@catherinegodbout-lavoie25334 жыл бұрын
K=2 because K = y2-y1/u2-u1 y=process response and u=excitation (impulse here) and y2=2 y1=0 u2 =1 u1-0 so: K= 2-0/1-0 =2
@ananthurajagopal98546 жыл бұрын
What is theta? Is it time delay?
@VincentStevenson6 жыл бұрын
Yes, theta is the time delay.
@ubg46184 жыл бұрын
is exp(-t/3) = e^(-t/3) ?
@VincentStevenson4 жыл бұрын
Yes
@ubg46184 жыл бұрын
@@VincentStevenson If i am given the input signal as a step function 1/s and the graph of the output signal where it shows that gain is 1. Can I then calculate the tau more precise? And how do i write the equivalent transfer function (k /ts + 1) of the system that produced the input/ouput pair?
@henrikt10514 жыл бұрын
finaly I understand it!
@soneng90785 жыл бұрын
How do you know it is 5?
@VincentStevenson5 жыл бұрын
I arbitrarily gave it a value for the sake of having numbers in this example.
@joedorseyjr5 жыл бұрын
@allen thompson 1- (1/e^(1)) = .632120558 that's where the value comes from. Which is derived from the equation Y(tau) = Yf - Yf*e^(-t/tau) where t and tau are equal.