Good proof, but it would have made more sense to change notation. Instead of letting H=Ker why not let K=Ker? And K should in fact be the Image according to the theorem. After I reminded myself of what notation you were using it was a very good proof to follow.
@chromosome244 жыл бұрын
when psi took the coset back to k, i was like aaaw, but then when phi got onto, i was like NO SHE DIDN'T!
@TheMathSorcerer4 жыл бұрын
Lol
@SubhamKumar-eg1pw9 жыл бұрын
Great video.Can you please provide a video for 3rd theorem ?
@jackliyong9 жыл бұрын
Excellent proof!
@TheMathSorcerer9 жыл бұрын
+Yong Li thank you!!
@superevilgoldfish7 жыл бұрын
Hi can you clarify the transformation you made on 4:38 ? you said "thats how you multiply cosets" and I've never seen that done in the course Im taking. I mean it sounds like you could only do that if you prove Commutative of Hx. Also if you have any free online book recommendations I would love to hear! Thanks!
@GM-mh4ws7 жыл бұрын
Are x and y in claim 1. elements of G or H? I don't follow how Hx=Hy implies that xy^-1 is in H, unless x, y were elements of H to begin with, by the subgroup test.
@TheMathSorcerer10 жыл бұрын
@XxKathrynRyderxX3 жыл бұрын
amazing, so easy to understand! thank u!! (:
@TheMathSorcerer3 жыл бұрын
You are welcome!
@zhengyangfei55992 жыл бұрын
Is well defined and injective the same thing?
@raducumihaicristian8 жыл бұрын
When we state this theorem it shouldn't be that Im(K) ~~ G/Ker(phi) instead of K ~~ G/Ker(phi)?
@jainamkhakhra38986 жыл бұрын
Thank you so much!!!.
@TheMathSorcerer6 жыл бұрын
np thanks for watching:)
@quiveirojason9 жыл бұрын
Amazing. Nice presentation
@TheMathSorcerer9 жыл бұрын
Jason Quiveiro thank you!!
@ninosawbrzostowiecki18929 жыл бұрын
I know this might be a stupid question, but why can we assume that phi is onto?
@TheMathSorcerer9 жыл бұрын
+Ninosław Ciszewski it's part of the statement, note if we don't assume phi is onto, using a similar arguement, we can show ph(G) =~ G/kerPhi. However if we assume it's onto, that means phi(G) = K, so we can say K =~ G/kerPhi, and this says something about K which is more useful.