If you want to learn more about Fixed Point Iteration, or feel like you still have questions, then watch my follow-up video Fixed Point Iteration Q&A kzbin.info/www/bejne/fKqmp5ytZ790aNE
@krishnendumondal3174 жыл бұрын
Can you please answer , xn=1÷(1+xn-1) is it convergent or not
@OscarVeliz4 жыл бұрын
See the follow-up video linked above.
@Swarmish9 жыл бұрын
Quick and too the point. This is exactly how I want to be taught when I'm first studying math material. Thank you so much!
@eevibessite2 жыл бұрын
kzbin.info/www/bejne/h4nckKalfKuca7s
@hans33310006 жыл бұрын
Why isn't there more tutorials like this?? i love you man! these other people trying to show off and typing out useless crap, i love this and hope you keep making videos. thank you for taking my headache away!
@ZeroKelvin4407 жыл бұрын
Final in 8 hrs. This saved at least half of one of those. Thanks!
@ahmetkarakartal95632 жыл бұрын
did you pass :D
@eevibessite2 жыл бұрын
kzbin.info/www/bejne/h4nckKalfKuca7s
@ninjahunterx74972 жыл бұрын
@@ahmetkarakartal9563 Dude probably has a job now.
@ahmetkarakartal95632 жыл бұрын
@@ninjahunterx7497 ahaha exactly
@ninjahunterx74972 жыл бұрын
@@ahmetkarakartal9563 Lol
@edon125710 жыл бұрын
This world needs people like you man :)
@haticeonal93837 жыл бұрын
no doubt !
@sandeeps70436 жыл бұрын
*True.*
@elisemarie51402 жыл бұрын
To think a four minute video makes more sense than two hours of lecture from my prof. Thanks.
@AJ-et3vf3 жыл бұрын
Nice video. I particularly like the mention about how Newton's method is a special case of fixed-point iteration. Brings things into perspective and gives me more appreciation for fixed-point iteration method.
@BlakeDietz12 жыл бұрын
Nice explanation. This is very digestible. It's a nice overview that helps to solidify all of the concepts for fixed point iteration.
@gabriellaadinugraha23710 жыл бұрын
You, sir, deserved a gold medal
@MaryMartinezdev10 жыл бұрын
Wow that was SO much clearer than my class lecture and all of my notes AND everything else I have seen online. THANK YOU!!
@dungtrantri62137 жыл бұрын
Những ngày đầuo I
@Mrhalloween559 жыл бұрын
Passed my midterm because of these vids, thanks a ton!
@OscarVeliz9 жыл бұрын
Tyler Perry good job! Glad these videos helped.
@Philleatsfood7 жыл бұрын
I have a question. At 2:50 in the video you plug in a root to check if the iteration will converge. Is this root an arbitrary guess or is it the actual root of the function? If the latter, how are we supposed to know this root from the start? As I've understood it, the whole point of the iteration is to find this value.
@OscarVeliz7 жыл бұрын
Please take a look at the frequently asked questions in the description box below the video. Let me know if that clears things up.
@sabaducia11 жыл бұрын
Thank you! Understood all the "fancy maths" in my computational lecture, but then didn't pay attention to the last step... =3 This made it sooooo much easier to understand the actual iteration part
@ClownDatWalk12 жыл бұрын
a 4 minute video explained this concept better than my prof who took over 2 hours. Thank you :)
@tolgakarahan28487 жыл бұрын
Very good and fast explanations. I get a grasp immediately. Thanks dude.
@kashifaminji9 жыл бұрын
such a complicated algorithm explained completely and very well in just 4 minutes.
@angelailieva9711 Жыл бұрын
when you did the convergence test on 2:40, how did you find the value you plugged in g'(x)? 🥺please
@OscarVeliz Жыл бұрын
I have a follow up video answering this and other commonly asked questions kzbin.info/www/bejne/fKqmp5ytZ790aNE
@rockstarvivek276 жыл бұрын
made it crystal clear in just 4 min....,nice work man
@ChrisLuigiTails6 жыл бұрын
At 3:13, if you choose the other root, the equation on the left diverges and the one on the right converges. How do you decide which root you should use?
@OscarVeliz6 жыл бұрын
I have a second video (Fixed Point Iteration Q&A kzbin.info/www/bejne/fKqmp5ytZ790aNE ) that answers this and many other frequently asked questions.
@95_Ends5 жыл бұрын
Love it. Just started with the Numerics, and was blessed to find your channel Thanks
@isxp3 жыл бұрын
This 10-year-old video is amazing. Cheers from a senior ME student taking Numerical Methods.
@OscarVeliz3 жыл бұрын
Check out the follow-up video kzbin.info/www/bejne/fKqmp5ytZ790aNE
@alexandrevachon5414 жыл бұрын
If we make fractals from fixed point iteration, you might see that the diverging functions can occasionally generate Julia sets.
@ramili07119 жыл бұрын
Thanks for great collection of videos. How do you check for convergence when you don't what the root is?
@OscarVeliz9 жыл бұрын
+ramili0711 Please see the Frequently Asked Questions in the video description.
@OscarVeliz12 жыл бұрын
Fixed Point Iteration can only find one root at a time and it depends on g(x) and the starting point. With g(x)=1+1/x and starting around 1 (for example) it converges to (1+root(5))/2 also known as the number phi. However, if you take the example that did not converge, g(x)=1/(x-1), but started at -1 (for example) the function converges to (1-root(5))/2 which is known as the number psi. As long as you start in the neighborhood of a root and g(x) behaves well, it converges to the closest root.
@QuinnMorgendorffer13 жыл бұрын
Thank you. This is a fantastic video and the best on the web for this method.
@AliHasanAli4 жыл бұрын
Thank you @Oscar for the great videos you make! I have a question, In 2:04, you mentioned that the g(x) on the right side does not converge if you start with the initial guess x1=1.6. I tried that with Matlab and my code ended up with converging to the other root (-0.6180) after 44 iterations (with accuracy = 10^-15). Did you try it? I don't know if I've done something wrong, but it's really confusing?
@OscarVeliz4 жыл бұрын
You haven't done anything wrong. I touch on this behavior in my follow-up video Fixed Point Iteration Q&A kzbin.info/www/bejne/fKqmp5ytZ790aNE
@AliHasanAli4 жыл бұрын
@@OscarVeliz Thanks for replying 🌷 I already checked this follow-up video, and I saw how you say that it converges to the other root when we start with -1, but what made me confused is that you mentioned the divergence when we start with 1.6..
@OscarVeliz4 жыл бұрын
Yes that is similar to the example showing how the first version converged to 1.618 even when you started very close to the other root (around -0.618)
@OscarVeliz4 жыл бұрын
That it looks like it is diverging but if you keep iterating it eventually converges.
@ggg17ggg173 ай бұрын
How did you go from x^2=x+1 to x=x+1/x ? At 0:50 seconds . Pleas help I watched q and a video and it wasnt explained
@OscarVeliz3 ай бұрын
This is dividing both sides by x. x² = x+1 x²/x = (x+1)/x x = x/x + 1/x x = 1 + 1/x
@ggg17ggg173 ай бұрын
@@OscarVelizI’m so retarded thank you
@Darklink22413 жыл бұрын
Thank you so much! I wish my professor would lay it out like this after doing all the proofs and derivations.
@viscourtroy2 ай бұрын
I remember the lecturer have shown us at the classroom how to use EXCEL to find the convergence by modified the first term in the formulae! I should try it!
@mnm37819 жыл бұрын
@Oscar, we donot know the root in the beginning so how can we check if g'(x) will converge or not?
@OscarVeliz9 жыл бұрын
+Mohsin Noman Please take a look at the video description box. It has the answer to this and many other frequently asked questions.
@supremecurt80477 жыл бұрын
Thank you! I understood it so easily, the terms on the textbooks were so confusing lol
@ericelegado16775 жыл бұрын
I will nominate you for this year's CNN Hero of the Year.
@gecaprathamesh65837 ай бұрын
Thank you! Was able to understand the method in one go! :)
@OscarVeliz13 жыл бұрын
@Anandtrceg It is sort of a catch-22 isnt it. Saying less than 1 guarantees that the function converges. However if greater/equal 1 it does not say that the function will diverge; it might still converge but that it is not guaranteed to converge. This just happens to be one of the properties of fixed point iteration. The other way to figure out if it is converging or diverging is to run it and check if x is converging to a number or bouncing around everywhere in a loop or sipping to infinity.
@alexbedoian Жыл бұрын
Super helpful in understanding how this method works. Gonna look more into it now. Amazing video. Thanks!
@OscarVeliz Жыл бұрын
Definitely check out my followup video kzbin.info/www/bejne/fKqmp5ytZ790aNE
@animereyiz5082 Жыл бұрын
Thanks for video, i like so much the part which you talk about converge test, i was wondering why we examine derirative of G but i understood. Thanks again
@ccluv64515 жыл бұрын
Why can't my prof be just like you!! He freaking spent an hour to explain this to us but nobody understood.
@jorgeboro61055 жыл бұрын
Thanks for teaching the procedure so nicely. I will get A+ in tomorrow's exam
@OscarVeliz5 жыл бұрын
I'd also recommend watching my follow-up video Fixed Point Iteration Q&A kzbin.info/www/bejne/fKqmp5ytZ790aNE
@piupolino26188 ай бұрын
I find it ironic that you need the root to find out whether it'll converge at the root. Great video, very helpful!
@OscarVeliz8 ай бұрын
I discuss this irony in my followup video kzbin.info/www/bejne/fKqmp5ytZ790aNE
@smile4dako7 жыл бұрын
Savior for my engineering analysis final
@user-ve3wy1oz7n8 жыл бұрын
how do you know which root to us to satisfy that g'(root)
@user-ve3wy1oz7n8 жыл бұрын
use*
@OscarVeliz8 жыл бұрын
+Efrain Castanon Please refer to the Frequently Asked Questions in the video description. Hope that helps.
@kikokimo26 жыл бұрын
Thank you first of all for this great video! But sorry, I still don't really get it, also after reading the answer to this question in the FAQ, how you come to this root of (1+sqrt(5))/2: 1) If you iterate multiple times and come to a number to which it converges (in this case 1.618), you know already that it converges! So why doing the test? 2) how to know directly the fraction form of a decimal number like you did from 1.618 --> (1+sqrt(5))/2 ? Thanks in advance!
@OscarVeliz6 жыл бұрын
Karim and I exchanged more comments on a different video so I only now just saw your comment Gajendra. The short answer is that "Will this function converge?" and "Will this function converge to this root?" are two different questions. Similar to "Are you married?" vs "Are you married to Ada?" and the convergence test only answers the latter. There is a way to force Fixed Point Iteration to converge which I will make a video on in the future but as an open method like Newton's and Secant it has no ultimate convergence guarantee.
@OscarVeliz6 жыл бұрын
That works since this a quadratic but what if our polynomial was 5th degree or some crazy function? The question that many people have asked is how to use the convergence test without the root or also if you've already found the root why do you need to know if it converges because clearly it did. I am working on a video to show how to force fixed point iteration to converge.
@user__unknown7 ай бұрын
Thanks for such a wonderful video, it made the topic easily understandable.
@hiawatadhya6 жыл бұрын
Thank you for all your numerical method video. You just make my night feels like one semester.
@pratikmitra355 жыл бұрын
Can anyone help me here....why does x1 = 2 picked....why not any other no. ? At 1:30
@OscarVeliz5 жыл бұрын
I have a second video (Fixed Point Iteration Q&A kzbin.info/www/bejne/fKqmp5ytZ790aNE ) that answers this and many other frequently asked questions.
@SuperExpert11 жыл бұрын
Really well explained. Thanks for the upload.
@jayrajzala98703 жыл бұрын
👑 👈🏻 You Dropped this.
@intanlast29819 жыл бұрын
Great explanation! cannot wait to watch another video, since there's many mathematical theory which really difficult to understand
@frajolapuc50069 жыл бұрын
Dear Oscar, thank you for your help.
@OscarVeliz9 жыл бұрын
Frajola Puc you're welcome.
@Sammy-jk3hw12 жыл бұрын
u really helped, my professor sucked at explaining it, i like it straightforward
@mehdimovahedaagre82535 жыл бұрын
highly appreciated your video and clear explanation.
@toshnono72377 жыл бұрын
Good Job Oscar. This video was amazing Sir
@Shreyansh147 Жыл бұрын
At 2:50 seconds, plug in the root of what value ?
@marflage4 жыл бұрын
It was actually very clear. Thank you so much. I knew it Newton's method was the base for every other method to find iterations; read it somewhere, perhaps the book. Lol
@dremr20382 жыл бұрын
2:14 when does convergence occur?
@limmy_b10 жыл бұрын
you're the fucking boss. so simple. so concise. so good.
@PSP55597 жыл бұрын
THANK YOU MR. OSCAR VELIZ
@aviraj0178 жыл бұрын
Thanks ! for simple and clear explanation.
@mrrobot91126 жыл бұрын
Sorry master I didnt understand a point because of my poor english. at 1:31 why you said x(sub1)=2 and at 1: 51 x(sub1)=1.6? These are random values?
@OscarVeliz6 жыл бұрын
The starting point should be an educated guess, a point close to your root. You can turn on captions and have the video player auto-translate to a language you are more comfortable with.
@daco5413 жыл бұрын
Thanks this is very helpful and very clear to understand.
@yblizzo7 жыл бұрын
Please make more videos on numerical analysis :)
@joaovitordutra93658 жыл бұрын
Thank you for the small, yet excellent video!
@АлександрЖарков-у9ш4 жыл бұрын
this was informative and short, thanks I finally got it
@AlexButterfield6 жыл бұрын
So in order to find the rate of convergence for some given f(x) we must evaluate the derivative at the root. Sense we probably only care about the rate of convergence in order to choose if this is an appropriate method for our function, seems to defeat the purpose if we need to run the algorithm it out it to determine if it is worth running. Can we evaluate using our interval?
@OscarVeliz6 жыл бұрын
Please take a look at the FAQ in the description box below the video particularly the answers to "How can you use the convergence test without the root?" and "What happens if a function fails the convergence test?" If you are given an interval of convergence then there is no need to test for convergence as anything within the interval will converge.
@meghna19159 жыл бұрын
How to we find the theoretical error bound for each iteration? What is the formula?
@OscarVeliz9 жыл бұрын
+Meghna Tanwal Consider Bisection Method where you halve the search space between an interval each iteration. The constant halving gives a linear convergence. The order of convergence for Fixed Point Iteration depends on your starting function and at the end of the video I showed how you can gauge it using derivatives of g. To find the exact order of convergence you'll need three consecutive errors like I showed in my video on Secant Method kzbin.info/www/bejne/lX7Jm4uFgbqhr9km41s
@meghna19159 жыл бұрын
+Oscar Veliz yeah I got it. thank you
@naru9095 жыл бұрын
Amazing explanation!!
@sitapea321678 жыл бұрын
where does the root value come from?
@OscarVeliz8 жыл бұрын
The answer to this and many other frequently asked questions can be found in the description box below the video.
@thataintme3 жыл бұрын
2:52 wats going on there? Where did the (1+sqrt(5))/2 come from?
@OscarVeliz3 жыл бұрын
Please refer to my follow-up video Fixed Point Iteration Q&A kzbin.info/www/bejne/fKqmp5ytZ790aNE
@thataintme3 жыл бұрын
@@OscarVeliz okay thanks for the reply. I really thought I wouldnt get one T_T
@OscarVeliz11 жыл бұрын
This version of the iteration causes divergence at either root. g(x) = x^2 - 1. g' = 2(x). r = (1[+/-]sqrt(5))/2. g'(r) =~ | 2*-0.618 | >= 1 or | 2*1.618 | >= 1. You can try it yourself and see. If you pick x_1 = 1 then x_2 = 0, x_3 = -1, x_4 = 0, x_5 = -1 ... You generally try to reduce the degree of the polynomial whose roots you're solving for.
@obigwejesse20047 ай бұрын
How did you get the 1+root5/2 from
@esaskhan957 жыл бұрын
Great tutorial!
@kasun61111 жыл бұрын
Arn't we trying to find the root at the first place? So how do we find g'(root) for the convergence test without knowing the root?
@Sthriven11 жыл бұрын
also, how did you find the root to plug into your convergence test when you're test is to determine whether or not that function is capable of finding the root?
@OscarVeliz11 жыл бұрын
Please see the other comments and my responses which will answer your questions. It will make it easier to read if you select the "Newest first" option and scroll down rather than "Top comments" which has them out of order.
@oumaimaabouzaid49487 жыл бұрын
Thanks for the video! but i have a question ... you used the root for testing the convergence ! ... but sometimes it's not that easy to find the root ...so what are we gonna do in this case?? ...another question ...if we already know the root ...so what is the point of this method?? thank you for answering :)
@OscarVeliz7 жыл бұрын
Please take a look at the frequently asked questions in the description box below the video. Hope this helps.
@Philleatsfood7 жыл бұрын
I have raised this question recently as well. Upon more study I've learnt that this is a limitation of fixed point iteration. It may be prudent to plot y=x and y=g(x) in the same figure so you can see more or less where the roots are. (Where the lines intersect) Looking at the slope of g(x) at the root may give you an indication weather FPI will converge to the root or not. If not, you might need to use a different numerical method like Newton-Raphson or Secant method as a compliment.
@oumaimaabouzaid49487 жыл бұрын
Philleatsfood thank you !
@mobins1276 жыл бұрын
Thank you very much for the great explanation.
@ChaliandChloeForever4 жыл бұрын
How do you get x equal to that at 0:58? Shouldn't you be taking the square route? I understand you're dividing it but that doesn't make sense to me...
@OscarVeliz4 жыл бұрын
I discuss taking the square root at 1:11. I think the confusion may come from the skipped step in the isolation of x process x^2/x = (x+1)/x becomes x = x/x + 1/x which becomes x = 1 + 1/x then label accordingly. If you prefer you technically can use the square root with a few caveats and as long as you don't mind doing using imaginary numbers as I explain in the follow-up video kzbin.info/www/bejne/fKqmp5ytZ790aNE
@aneeshsrinivas90882 жыл бұрын
Is the uniqueness theorem for fixed points also true if the condition that |g’(x)|
@OscarVeliz2 жыл бұрын
I go over the convergence test in more detail in my video on Fixed Point Iteration for Nonlinear Systems kzbin.info/www/bejne/rpKVp4ipjq93Y8U and maybe that will help to clear things up. Sorry for taking so long to respond.
@somebody53911 жыл бұрын
its Really Good, Thank you , its well explained than my Teacher!!
@HellOnGames4 жыл бұрын
Thanks! You saved my day, again.
@OscarVeliz4 жыл бұрын
Be sure to check out the follow-up video kzbin.info/www/bejne/fKqmp5ytZ790aNE
@pauselab55699 ай бұрын
one of the best iteration theorem is banach's fixed point theorem which is great for all the continued fraction and continued root because they all satisfy the conditions for the theorem
@AquaBerk966 жыл бұрын
really helpful i finally get it how it works, thank you sir..
@Melsi197913 жыл бұрын
I too want to thank you, your help is so valuable!
@nkurunzizaladislas25993 жыл бұрын
sir! ,where did u got from that " one plus square roots 5 over 2 in bracket power 2" that you replaced in g prime
@OscarVeliz3 жыл бұрын
Please check out my follow-up video Fixed Point Iteration Q&A kzbin.info/www/bejne/fKqmp5ytZ790aNE
@nkurunzizaladislas25993 жыл бұрын
@@OscarVeliz thx sir
@jy0267928412 жыл бұрын
isnt suppose to have two answers for x? is there a way to find the 2nd answer by using the same method?
@lucianoinso3 жыл бұрын
Thanks for the video, really clear! On a side note: I implemented it on python for a course and tried with the x = 1.6 starting point and it converged, I was like hmm that's odd, checked the points and seems like with exact arithmetic when the iteration reaches 1 it fails because of division by zero (1/(1-1) = 1/0 = Zero division Error), but because of error carried by floating point arithmetics it calculated (1/(1-1.0000000000000018)) = 562949953421312 and continued to calculate the next point till it converged to the left root lmao!
@OscarVeliz3 жыл бұрын
Good job on finding that behavior! I covered something similar in a follow-up video to this one kzbin.info/www/bejne/fKqmp5ytZ790aNE that I think you will also find helpful.
@lucianoinso3 жыл бұрын
@@OscarVeliz thank you! I'll check it!
@leesweets4110 Жыл бұрын
Is it possible to use simple transforms (horizontal shifting, compression/expansions, etc), to force the condition |g'(x)|
@OscarVeliz Жыл бұрын
I'd recommend looking into Steffensen's Method with Aitken's Δ² kzbin.info/www/bejne/eIW8hZ1mp5qDkKc as well as Wegstein's Method kzbin.info/www/bejne/ipCZnoVsp6-Lh7M that latter of which induces convergence
@leesweets4110 Жыл бұрын
@@OscarVeliz At the time of my writing that comment I had already watched those videos. Thanks though. No, Im talking about something fundamentally different. Or at least I think I am. I wouldnt argue that those methods constitute simple linear transformations. Wegstein comes close but it is a bit different.
@OscarVeliz Жыл бұрын
I think I see more about what you're asking. Applying a transformation might also do the opposite and cause it to diverge. Knowing which transformation to apply would take some functional analysis before hand which is just sort of built-in to something like Wegstein.
@YouTubeChannel20009 жыл бұрын
Hi, How it can converge quadrically when |g'(x)|=0??
@OscarVeliz9 жыл бұрын
Wajdi Al-Rekaby not g'(x) = 0 but g'(root) = 0 which means it is *at least* 2nd order. You'll also have to check higher order derivatives of g'', g''', ... until you get a non-zero derivative at the root. The more levels you check the higher the order. To find the exact order you'll need three consecutive errors like I discussed in my Secant Method video kzbin.info/www/bejne/lX7Jm4uFgbqhr9k
@OscarVeliz11 жыл бұрын
The |g'|>=1 test only applies at x=r so you can't test it a x=1.6. Even then, this test is not a guarantee (see my reply to Anandtrceg). For example with g(x) = x^2 - 1 if you picked x1 = (1+sqrt(5))/2 then mathematically x2 will be (1+sqrt(5))/2 however, in the computer or calculator there is not enough precision to represent the sqrt(5) and the resulting iteration may or may not work. Picking x1 = 1.6 as you suggested causes x2 = 1.56, x3 = 1.4336 x4 = 1.0552...
@ordinaryperson35547 жыл бұрын
what i dont understand is that wasnt our purpose to find the root, if so , how can i know if the g of x converges or not (without knowing the root)
@OscarVeliz7 жыл бұрын
Please see the Frequently Asked Questions (FAQ) in the description box below the video.
@DrSlough9 жыл бұрын
Great explanation, thank you
@marksolvent32593 жыл бұрын
Idk how tf you summarized these long pages from my book, which, due to my attention span, I already had trouble reading, and I was also mad about how the book doesn't define a lot of what it is making use of.
@vd85312 жыл бұрын
3:08 how would we know the root if that is what we're looking for?
@madawacko2588 жыл бұрын
Great Video, thanks mate.
@theoriginalcows13573 жыл бұрын
This is seriously high level for a 2011 video lmao
@OscarVeliz3 жыл бұрын
Check out the follow-up video, it is much more recent kzbin.info/www/bejne/fKqmp5ytZ790aNE
@mechwise68112 жыл бұрын
Superb 👍
@zoedepecol5 жыл бұрын
What if we don't know our root answer? so how do we know what to plug into g"(x) if the problem we have is super complicated and we can't exactly solve for x
@OscarVeliz5 жыл бұрын
I have a second video (Fixed Point Iteration Q&A kzbin.info/www/bejne/fKqmp5ytZ790aNE ) that answers this and many other frequently asked questions.
@zoedepecol5 жыл бұрын
@@OscarVeliz thank you so much!
@abdulmukit44205 жыл бұрын
I wish you were the math teacher at my university. :(
@nikoskoutsilieris60874 жыл бұрын
what if i do not know the root? then do i have to prove that the derivative of g(x) is less than one for every x allowed by the first function f(x)?
@OscarVeliz4 жыл бұрын
See the follow up video Fixed Point Iteration Q&A kzbin.info/www/bejne/fKqmp5ytZ790aNE
@AjjawiPhoto11 жыл бұрын
Thank you, it is really a beneficial video.
@trippymintz13 жыл бұрын
well done sir this is more than enough even our instructor couldn't do that :P thanks a lot :)