Pro tip: if you notice a constant is being used often, give it a name. I took (e^pi - e^(-pi))/pi to be equal to gamma and that cleaned up my work a lot! Also at the end you can notice that gamma = 2sinh(pi)/pi.
@natew73364 жыл бұрын
You have been helping me understand math since calculus and I'm in PDE's now. You're a true hero
@alexander514136 жыл бұрын
It's interesting to see that if you ignore the sin(nx) term in the expansion, the resulting function is no longer e^x but now cosh(x) (and ignoring a_0 and cos(nx) gives sinh(x)). I guess it makes sense knowing that e^x = cosh x + sinh x and that probably also explains why lots of comments point out that expansion of e^x can be expressed very easily using the hyperbolic trig functions.
@crismal64774 жыл бұрын
That’s awesome, I didn’t even know that. I’m just learning about Fourier series and it’s really cool, I wish I learned about all this earlier.
@CharlesPanigeo3 жыл бұрын
This is not a coincidence! In fact, this is a valid definition of sinh(x) and cosh(x). Every function can be uniquely decomposed as the sum of an even function and an odd function. For e^x that decomposition is e^x = cosh(x) + sinh(x) as you said. Relating that the Fourier series, the cos(x) terms of the Fourier series always describe the even part of the decomposition, and the sin(x) terms always describe the odd part. So we can use the Fourier series to calculate the even-odd decomposition of any function!
@stumbling5 жыл бұрын
You have no idea how much I needed this. Thanks. May Chen Lu be with you.
@The1RandomFool5 жыл бұрын
Just a minor nitpick: (e^(pi) - e^(-pi))/2 can be abbreviated sinh(pi).
@resident51246 жыл бұрын
This was really cool, I enjoy anything Fourier so seeing this was great. Thanks!
@tomvanmoer82026 жыл бұрын
This was on my Calculus II exam back in 2011. Those were some good times.
@blackpenredpen6 жыл бұрын
Yay!!!
@jasonryan25457 ай бұрын
This is indeed beautiful. For one, I could never understand why some equations look comparatively more beautiful than others. I can see now that if the correct inputs are in place, the equation does the work for us! Once again though, this is indeed a fantastic series! Thank you do much! ❤🎉
@angelmendez-rivera3516 жыл бұрын
YAY you made the yay video Also, notice that the term A0 is equal to sinh(π)/π. Just thought it was interesting. In fact, you can entirely factor out a multiple of sinh(π)/π from the series.
@blackpenredpen6 жыл бұрын
Yup, it is! : )
@aashsyed12773 жыл бұрын
yaya yay yay yay series aka fouryay yay ya y ay yatyb series!!!!!!!!!
@brightkwofie9822 жыл бұрын
Great Sir, i never understand fourier series till i watched this video, Bravoo
@radiotv6246 жыл бұрын
Will you be doing Fourier Transform?
@no1bot_in_Dt Жыл бұрын
This is so nice. Proud to see a Nigerian youth be so creative ❤ I wish you success in all you are about to embark on.
@varshiniarunkumar56435 жыл бұрын
Thank you sir....This sum was asked in my internals exam....Now i got this sum clear
@kevinzenith4 жыл бұрын
Hands down. Me too! 😂😅
@stephomn6 жыл бұрын
that was an amazing result looking forward to more awesome results thanks for sharing and keep it up
@Àlify.1111 ай бұрын
Hello sir I'm from India This was extremely good... Thank you
@highwastakenКүн бұрын
You can bypass the headache giving integration by just converting everything into the complex form, so computing Cn and then from that computing An, saves you a lot of time if you're familiar with complex numbers
@NicolasSchmidMusic4 жыл бұрын
it scared me when those children started yaying
@horsehorse1791 Жыл бұрын
Bro you are great yaar Just keep working I appreciate your work 👍👍
@ozzyfromspace5 жыл бұрын
Math for its own sake is a beautiful thing, gotta say ❤️
@chimaru89436 жыл бұрын
you're a life saver BPRP #yay
@blackpenredpen6 жыл бұрын
You're welcome!
@Rajgorabhijeet5 жыл бұрын
Thankyou sir, B. Engineering Learning from India .
@jokinnn3 жыл бұрын
thanks, nice trick on the integral
@krishnak.dileep41206 ай бұрын
Thank you so much.... You are like God to me
@ok-gl7eq2 жыл бұрын
Thanks helped a lot
@siggea59123 жыл бұрын
Thanks for the video!
@nancysharma94545 жыл бұрын
I like the way you teach .....
@Patapom36 жыл бұрын
Amazing!
@shivadahiya19145 жыл бұрын
Thanks bro u make my day
@abdallahallahham85865 жыл бұрын
This is amazing ... thank you
@zabrakhan51786 жыл бұрын
How would you visualize this when looking at the graphs of both e^x and the Fourier series of e^x?
@angelmendez-rivera3516 жыл бұрын
Zabra Khan The Fourier series takes that segment and the repeats it periodically, resulting in discontinuities at every multiple of π. It repeats it at the same height.
@ffggddss6 жыл бұрын
@@angelmendez-rivera351 Right, except the discontinuities are at every odd multiple of π. Fred
@angelmendez-rivera3516 жыл бұрын
ffggddss Correct, that is what I meant to say.
@jeffreyluciana87114 жыл бұрын
Excellent!
@camilomuianga78652 жыл бұрын
Why do we have to integrate a none periodic function in the interval [-pi, pi]?
@mehdizangiabadi-iw6tnАй бұрын
A=(4,4) B=(-3,-3) C=(A^B) beautiful
@kamosevoyan43706 жыл бұрын
Ты великолепный человек, спасибо большое!
@NeonArtzMotionDesigns5 жыл бұрын
I ended up getting a 4 on the AP calculus ab
@angelmendez-rivera3516 жыл бұрын
Also, I know you said the Fourier series does not converged at the endpoints. But I did notice that if you let x = π, then the sin(n•x) all become 0, and cos(nπ) = (-1)^n, and if you multiply that by the coefficient (-1)^n/(1 + n^2), then the result is 1/(1 + n^2). So this would give you the sum, assuming the series were to converge to the function at the endpoints. But the problem is that it also works for x = -π,, and that seems to give a contradiction since the series would stay exactly the same, but the thing it equals would be different. It is a pity.
@blackpenredpen6 жыл бұрын
Angel Mendez-Rivera Yes, I actually said the exact thing when I recorded the video but decided to cut that off to shorten the length. The interesting thing is, sum of 1/(1+n^2) is equal to the average when we plug Pi and -Pi in. Crazy and I don't know why!
@angelmendez-rivera3516 жыл бұрын
blackpenredpen ooh I used to know th explanation but I forgot it. It had something to with this one phenomenon that caused the oscillation to go crazy near the endpoints
@danielauto37676 жыл бұрын
No, not a pitty. The end points do converge. They just don't converge to the the values of the function at either end. Both ends converge instead to the average of the function values calculated at the end points.
@danielauto37676 жыл бұрын
It's called Gibbs phenomenon. Look it up
@angelmendez-rivera3516 жыл бұрын
Daniel Auto Yeah, I actually realized that before you commented, and I posted in my long response to the comment in he asked the questions
@buzeaalexandru47696 жыл бұрын
Your videos about calculus are really cool man. I learned a lot from them. Can you do the limit as x approaches 0+ of x^(e^-1/x) in your next video?
@angelmendez-rivera3516 жыл бұрын
Buzea Alexandru L = lim (x -> 0+) x^(e^-1/x). log L = log [lim (x -> 0+) x^(e^-1/x)] = lim (x -> 0+) e^(-1/x)•log x, since log x is a continuous function on the interval (0, ♾). e^(-1/x)•log x = log x/[e^(1/x)], so log L = lim (x -> 0+) log x/[e^(1/x)] = lim (x -> 0+) (1/x)/[e^(1/x)•(-1/x^2)] = - lim (x -> 0+) x/[e^(1/x)] = 0, since the form is 0+/e^+Infinity = 0/infinity = 0. Hence log L = 0, so L = 1, and since L = lim (x -> 0+) x^(e^(-1/x)), this means lim (x -> 0+) x^[e^(-1/x)] = 1
@luisgamalielbasurtocavazos60765 жыл бұрын
Thanks you just saved my life lol
@zedzad32795 жыл бұрын
Dear Sir , Can you explain how you get the integration of a0 and a n to the power n ??? please
@purim_sakamoto3 жыл бұрын
お疲れ様でした Yes! Say! Fouriyay!
@i_am_anxious026 жыл бұрын
200K (almost) subs #YAY Among the last of the good creators at the heart of this platform #YayYayYayYay :)))
@blackpenredpen6 жыл бұрын
Pi is the best 😁😁😁😁😁thank you!!!
@i_am_anxious026 жыл бұрын
blackpenredpen 😁😁
@victorpaesplinio28653 жыл бұрын
I did the same thing, but for the complex version of the series. I got Sum from -infinity to infinity of sinh(pi)/pi (-1)^n e^(i*n*t) All the steps to find the complex coefficient are consistent, but Wolfram Alpha and others sums calculators says this sum diverges. Is this result consistent? I know this videos is more than 2 years old, but I didn't find the complex version of e^x series anywhere on internet.
@sahanravindu78282 жыл бұрын
thank you sir
@DC-zi6se2 жыл бұрын
Step jumps are there
@الملكهالمغروره-ك4غ5 жыл бұрын
Thank you
@sugarfrosted20056 жыл бұрын
I get it, you're assuming that it has a form then extracting the form using linear operators.
@angelmendez-rivera3516 жыл бұрын
sugarfrosted He is assuming it can be expressed as a linear combination of the basis space of waves.
@ffggddss6 жыл бұрын
I concur that this deserves 4 yay's! Fred
@shin81able4 жыл бұрын
nice video :) what happens if its e^(x-pi) how to calculate this?
@rshawty3 жыл бұрын
azy j’ai lâché un like juste pour le début chu un gamin mdrr yaaaaaay
@shazullahyusufzai5704 Жыл бұрын
Could you please solve this equation x^x=e
@zakichahboun5433 жыл бұрын
hello brother i have a question Can I replace e ^ (π) -e ^ (- π) with sinh (π) ?????
@apoorvvyas526 жыл бұрын
How to deal if the interval is between say any two numbers a and b rather than - pi to pi?
@AndDiracisHisProphet6 жыл бұрын
it gets ugly
@blackpenredpen6 жыл бұрын
Definitely.
@maxwellsequation48874 жыл бұрын
Intense
@sciencebyoliver68884 жыл бұрын
is this on a open interval from -pi to pi????
@shivimish99626 жыл бұрын
How do you test anything for convergence?
@emperorpingusmathchannel53656 жыл бұрын
Intuitive proof for taylor and fourier series?
@angelmendez-rivera3516 жыл бұрын
GLaDOS What exactly do you mean by proving them? They are definitions.
@nathanisbored6 жыл бұрын
@@angelmendez-rivera351 they are not definitions, and he just proved them in a couple previous videos
@angelmendez-rivera3516 жыл бұрын
nathanisbored He did not prove them. He explained what they are, why we want them, and how to get them.
@nathanisbored6 жыл бұрын
@@angelmendez-rivera351 if they were just definitions, then we couldnt use them to derive other things about the functions they represent. for example we wouldnt be able to say the identity he showed at the end of the video is true. we can however define them to be extensions of the domain of a function (for example e^(ix) can be evaluated using the taylor series as a definition)
@angelmendez-rivera3516 жыл бұрын
nathanisbored Your comment makes absolute nonsense, considering that everything in mathematics can only be derived from axioms and definitions. The definition of the Taylor series of a function f(x) is the power series with respect to x - a with the coefficient sequence [f^(n)](a)/n!. That has nothing to do with whether there is information about the function we can derive from this series or not. The series already uses information about the function inevitably. The reason we define e^x by its Taylor series is because the function is analytic and the series converges uniformly everywhere, so it occupies the same real domain as the previous definition, but with much more convenience of usage, and this analicity gives a continuation which permits for using this for complex numbers and elements of other topological spaces. That once again has nothing to do with these series being definitions and not theorems.
@miotegui5 жыл бұрын
Could be possible that you made a mistake on the a0?. Shouldn't it be a0 = (e^pi - e^-pi)/pi ?
@Bayerwaldler4 жыл бұрын
There are different definition for a0. The one bprp uses contains the factor 1/2.
@miotegui4 жыл бұрын
@@Bayerwaldler Thanks!
@azharshah13974 жыл бұрын
Sir, can't we use the hyperbolic functions in this problem?
@thakkarsonal85853 жыл бұрын
Kar sake hai
@kartiksharma71666 жыл бұрын
Pls do a video on the summation of x+ x^2 +x^4 + x^8+x^16 ... (inf) Yayayayayayayayayayayayayaya......👍👍👍👍👌👌👌👌this video deserves 💐💐💐💐
@owamaraayomide85973 жыл бұрын
Why is cos(-nπ)=(-1)^n and cos(nπ)=(-1)^n
@soumyaranjanbehera52954 жыл бұрын
is cosnπ is equal to cos(-nπ) ,
@osuNoobCast6 жыл бұрын
13:15 what else would i like? i
@sanzao74875 жыл бұрын
Dude, ty!! when i was practicing, i thought that -pi in Sen(kx)-->(Senk-pi) it could not use the identity :c Viva!
@anntphone77272 жыл бұрын
How get 1 power n
@Jacob-uy8ox6 жыл бұрын
Tetration of yays!
@nctbeducation30429 ай бұрын
Thanku bro
@ccuuttww6 жыл бұрын
the problem is why we need to approximate the e?
@blackpenredpen6 жыл бұрын
I actually have been wanting to do that sum of (-1)^n/(1+n^2) so that's why I do these.
@VikasSingh-tw8wu5 жыл бұрын
But the formula for fourier serious also includes 1/2 a0 ...which you didn't write
@Bayerwaldler4 жыл бұрын
There are different definition for a0. The one bprp uses contains the factor 1/2.
@mafujmolla50692 жыл бұрын
Great💚
@_DD_156 жыл бұрын
Lol I was gonna say why didn't you use sinh (pi), then I saw that your goal was something totally differe than showing the terms of e^(x) in terms of cos and sin.
@thomasblackwell95075 жыл бұрын
COOL!
@jinijophy29746 жыл бұрын
How did (1+n)^2 become 1+n^2?
@ffggddss6 жыл бұрын
It didn't. 1/(1 + n²) came from the factor of 1/(a² + b²) in the integrals, ∫eªˣ sin(bx) dx and ∫eªˣ cos(bx) dx; with a=1, b=n. Fred
@yossefbudagov87486 жыл бұрын
Could you make a video proving the 1/pi approxiamation?
@rameshparamanikofwestbenga17425 жыл бұрын
Right a0/2
@Bayerwaldler4 жыл бұрын
There are different definition for a0. The one bprp uses contains the factor 1/2.
@adarshkumar31846 жыл бұрын
Hello ,did you the exact integral of (root over tan(X) +root over cot(X))dx . Please help me guy i'm in trouble
@angelmendez-rivera3516 жыл бұрын
adarsh kumar What is that expression supposed to mean? More specifically, what exactly is “root over tan(x)”?
@adarshkumar31846 жыл бұрын
No friend , it is integral of (√(tan(x))+√(cot(x)) dx which is to be determined
@angelmendez-rivera3516 жыл бұрын
adarsh kumar He already has a video on these. More specifically, he made a video on integrating the SqRt[tan(x)]. That answers half your question. As for SqRt[cot(x)], notice that cot(x) = tan(π/2 - x). As such, all you must do is perform the substitution u = π/2 - x, and your integrand will simply become a constant multiple of SqRt[tan(u)], and that answers the second part to your question.
@adarshkumar31846 жыл бұрын
@@angelmendez-rivera351 thanks a lot
@adarshkumar31846 жыл бұрын
@@angelmendez-rivera351 I've one more question that is integral of 1over (sin^4(x) +sin^2(X) cos^2(X) +cos^4(x)) whole multiple dx
@kutuboxbayzan59675 жыл бұрын
Well i understanded proof but 1 think is not true e^-pi=lim x->-pi (f(x))=sum An*cos(nx)+bnsin(nx)=-sum An e^pi= lim x->pi(f(x))=sum Ancos(nx)+Bnsin(nx)=-sum An And this meaning e^-pi=e^pi then pi=0. Can you say my wrong?
@jyotirmoyroy70415 жыл бұрын
@daniellazar47426 жыл бұрын
Can you integrate (ln(1/x)+sqrt(x))/(x^2+sin(1/x^2)) ?
@angelmendez-rivera3516 жыл бұрын
I am fairly certain this is not integrante using elementary functions.
@johnk38416 жыл бұрын
I like foyay
@aniketmunde57333 жыл бұрын
tq
@greggregi63836 жыл бұрын
you got some big arms
@gian2kk6 жыл бұрын
Do you even lift bro
@JamalAhmadMalik6 жыл бұрын
#yay I am a wannabe mathfreak!
@JamalAhmadMalik6 жыл бұрын
I'm the happiest... You included: #yay #yay #yay
@blackpenredpen6 жыл бұрын
Yay!!!!!
@KaanAkkoyunlu-b9u18 күн бұрын
🥶
@copperfield426 жыл бұрын
:o this is more cute than the mess I got XD I didn't simplify those cos(nπ) and sin(nπ), but I transformed those exponential into sinh(π)