Fourier Series of e^x from -pi to pi (fourier series engineering mathematics)

  Рет қаралды 125,334

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 142
@thedoublehelix5661
@thedoublehelix5661 5 жыл бұрын
Pro tip: if you notice a constant is being used often, give it a name. I took (e^pi - e^(-pi))/pi to be equal to gamma and that cleaned up my work a lot! Also at the end you can notice that gamma = 2sinh(pi)/pi.
@natew7336
@natew7336 4 жыл бұрын
You have been helping me understand math since calculus and I'm in PDE's now. You're a true hero
@alexander51413
@alexander51413 6 жыл бұрын
It's interesting to see that if you ignore the sin(nx) term in the expansion, the resulting function is no longer e^x but now cosh(x) (and ignoring a_0 and cos(nx) gives sinh(x)). I guess it makes sense knowing that e^x = cosh x + sinh x and that probably also explains why lots of comments point out that expansion of e^x can be expressed very easily using the hyperbolic trig functions.
@crismal6477
@crismal6477 4 жыл бұрын
That’s awesome, I didn’t even know that. I’m just learning about Fourier series and it’s really cool, I wish I learned about all this earlier.
@CharlesPanigeo
@CharlesPanigeo 3 жыл бұрын
This is not a coincidence! In fact, this is a valid definition of sinh(x) and cosh(x). Every function can be uniquely decomposed as the sum of an even function and an odd function. For e^x that decomposition is e^x = cosh(x) + sinh(x) as you said. Relating that the Fourier series, the cos(x) terms of the Fourier series always describe the even part of the decomposition, and the sin(x) terms always describe the odd part. So we can use the Fourier series to calculate the even-odd decomposition of any function!
@stumbling
@stumbling 5 жыл бұрын
You have no idea how much I needed this. Thanks. May Chen Lu be with you.
@The1RandomFool
@The1RandomFool 5 жыл бұрын
Just a minor nitpick: (e^(pi) - e^(-pi))/2 can be abbreviated sinh(pi).
@resident5124
@resident5124 6 жыл бұрын
This was really cool, I enjoy anything Fourier so seeing this was great. Thanks!
@tomvanmoer8202
@tomvanmoer8202 6 жыл бұрын
This was on my Calculus II exam back in 2011. Those were some good times.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Yay!!!
@jasonryan2545
@jasonryan2545 7 ай бұрын
This is indeed beautiful. For one, I could never understand why some equations look comparatively more beautiful than others. I can see now that if the correct inputs are in place, the equation does the work for us! Once again though, this is indeed a fantastic series! Thank you do much! ❤🎉
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
YAY you made the yay video Also, notice that the term A0 is equal to sinh(π)/π. Just thought it was interesting. In fact, you can entirely factor out a multiple of sinh(π)/π from the series.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Yup, it is! : )
@aashsyed1277
@aashsyed1277 3 жыл бұрын
yaya yay yay yay series aka fouryay yay ya y ay yatyb series!!!!!!!!!
@brightkwofie982
@brightkwofie982 2 жыл бұрын
Great Sir, i never understand fourier series till i watched this video, Bravoo
@radiotv624
@radiotv624 6 жыл бұрын
Will you be doing Fourier Transform?
@no1bot_in_Dt
@no1bot_in_Dt Жыл бұрын
This is so nice. Proud to see a Nigerian youth be so creative ❤ I wish you success in all you are about to embark on.
@varshiniarunkumar5643
@varshiniarunkumar5643 5 жыл бұрын
Thank you sir....This sum was asked in my internals exam....Now i got this sum clear
@kevinzenith
@kevinzenith 4 жыл бұрын
Hands down. Me too! 😂😅
@stephomn
@stephomn 6 жыл бұрын
that was an amazing result looking forward to more awesome results thanks for sharing and keep it up
@Àlify.11
@Àlify.11 11 ай бұрын
Hello sir I'm from India This was extremely good... Thank you
@highwastaken
@highwastaken Күн бұрын
You can bypass the headache giving integration by just converting everything into the complex form, so computing Cn and then from that computing An, saves you a lot of time if you're familiar with complex numbers
@NicolasSchmidMusic
@NicolasSchmidMusic 4 жыл бұрын
it scared me when those children started yaying
@horsehorse1791
@horsehorse1791 Жыл бұрын
Bro you are great yaar Just keep working I appreciate your work 👍👍
@ozzyfromspace
@ozzyfromspace 5 жыл бұрын
Math for its own sake is a beautiful thing, gotta say ❤️
@chimaru8943
@chimaru8943 6 жыл бұрын
you're a life saver BPRP #yay
@blackpenredpen
@blackpenredpen 6 жыл бұрын
You're welcome!
@Rajgorabhijeet
@Rajgorabhijeet 5 жыл бұрын
Thankyou sir, B. Engineering Learning from India .
@jokinnn
@jokinnn 3 жыл бұрын
thanks, nice trick on the integral
@krishnak.dileep4120
@krishnak.dileep4120 6 ай бұрын
Thank you so much.... You are like God to me
@ok-gl7eq
@ok-gl7eq 2 жыл бұрын
Thanks helped a lot
@siggea5912
@siggea5912 3 жыл бұрын
Thanks for the video!
@nancysharma9454
@nancysharma9454 5 жыл бұрын
I like the way you teach .....
@Patapom3
@Patapom3 6 жыл бұрын
Amazing!
@shivadahiya1914
@shivadahiya1914 5 жыл бұрын
Thanks bro u make my day
@abdallahallahham8586
@abdallahallahham8586 5 жыл бұрын
This is amazing ... thank you
@zabrakhan5178
@zabrakhan5178 6 жыл бұрын
How would you visualize this when looking at the graphs of both e^x and the Fourier series of e^x?
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
Zabra Khan The Fourier series takes that segment and the repeats it periodically, resulting in discontinuities at every multiple of π. It repeats it at the same height.
@ffggddss
@ffggddss 6 жыл бұрын
@@angelmendez-rivera351 Right, except the discontinuities are at every odd multiple of π. Fred
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
ffggddss Correct, that is what I meant to say.
@jeffreyluciana8711
@jeffreyluciana8711 4 жыл бұрын
Excellent!
@camilomuianga7865
@camilomuianga7865 2 жыл бұрын
Why do we have to integrate a none periodic function in the interval [-pi, pi]?
@mehdizangiabadi-iw6tn
@mehdizangiabadi-iw6tn Ай бұрын
A=(4,4) B=(-3,-3) C=(A^B) beautiful
@kamosevoyan4370
@kamosevoyan4370 6 жыл бұрын
Ты великолепный человек, спасибо большое!
@NeonArtzMotionDesigns
@NeonArtzMotionDesigns 5 жыл бұрын
I ended up getting a 4 on the AP calculus ab
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
Also, I know you said the Fourier series does not converged at the endpoints. But I did notice that if you let x = π, then the sin(n•x) all become 0, and cos(nπ) = (-1)^n, and if you multiply that by the coefficient (-1)^n/(1 + n^2), then the result is 1/(1 + n^2). So this would give you the sum, assuming the series were to converge to the function at the endpoints. But the problem is that it also works for x = -π,, and that seems to give a contradiction since the series would stay exactly the same, but the thing it equals would be different. It is a pity.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Angel Mendez-Rivera Yes, I actually said the exact thing when I recorded the video but decided to cut that off to shorten the length. The interesting thing is, sum of 1/(1+n^2) is equal to the average when we plug Pi and -Pi in. Crazy and I don't know why!
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
blackpenredpen ooh I used to know th explanation but I forgot it. It had something to with this one phenomenon that caused the oscillation to go crazy near the endpoints
@danielauto3767
@danielauto3767 6 жыл бұрын
No, not a pitty. The end points do converge. They just don't converge to the the values of the function at either end. Both ends converge instead to the average of the function values calculated at the end points.
@danielauto3767
@danielauto3767 6 жыл бұрын
It's called Gibbs phenomenon. Look it up
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
Daniel Auto Yeah, I actually realized that before you commented, and I posted in my long response to the comment in he asked the questions
@buzeaalexandru4769
@buzeaalexandru4769 6 жыл бұрын
Your videos about calculus are really cool man. I learned a lot from them. Can you do the limit as x approaches 0+ of x^(e^-1/x) in your next video?
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
Buzea Alexandru L = lim (x -> 0+) x^(e^-1/x). log L = log [lim (x -> 0+) x^(e^-1/x)] = lim (x -> 0+) e^(-1/x)•log x, since log x is a continuous function on the interval (0, ♾). e^(-1/x)•log x = log x/[e^(1/x)], so log L = lim (x -> 0+) log x/[e^(1/x)] = lim (x -> 0+) (1/x)/[e^(1/x)•(-1/x^2)] = - lim (x -> 0+) x/[e^(1/x)] = 0, since the form is 0+/e^+Infinity = 0/infinity = 0. Hence log L = 0, so L = 1, and since L = lim (x -> 0+) x^(e^(-1/x)), this means lim (x -> 0+) x^[e^(-1/x)] = 1
@luisgamalielbasurtocavazos6076
@luisgamalielbasurtocavazos6076 5 жыл бұрын
Thanks you just saved my life lol
@zedzad3279
@zedzad3279 5 жыл бұрын
Dear Sir , Can you explain how you get the integration of a0 and a n to the power n ??? please
@purim_sakamoto
@purim_sakamoto 3 жыл бұрын
お疲れ様でした Yes! Say! Fouriyay!
@i_am_anxious02
@i_am_anxious02 6 жыл бұрын
200K (almost) subs #YAY Among the last of the good creators at the heart of this platform #YayYayYayYay :)))
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Pi is the best 😁😁😁😁😁thank you!!!
@i_am_anxious02
@i_am_anxious02 6 жыл бұрын
blackpenredpen 😁😁
@victorpaesplinio2865
@victorpaesplinio2865 3 жыл бұрын
I did the same thing, but for the complex version of the series. I got Sum from -infinity to infinity of sinh(pi)/pi (-1)^n e^(i*n*t) All the steps to find the complex coefficient are consistent, but Wolfram Alpha and others sums calculators says this sum diverges. Is this result consistent? I know this videos is more than 2 years old, but I didn't find the complex version of e^x series anywhere on internet.
@sahanravindu7828
@sahanravindu7828 2 жыл бұрын
thank you sir
@DC-zi6se
@DC-zi6se 2 жыл бұрын
Step jumps are there
@الملكهالمغروره-ك4غ
@الملكهالمغروره-ك4غ 5 жыл бұрын
Thank you
@sugarfrosted2005
@sugarfrosted2005 6 жыл бұрын
I get it, you're assuming that it has a form then extracting the form using linear operators.
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
sugarfrosted He is assuming it can be expressed as a linear combination of the basis space of waves.
@ffggddss
@ffggddss 6 жыл бұрын
I concur that this deserves 4 yay's! Fred
@shin81able
@shin81able 4 жыл бұрын
nice video :) what happens if its e^(x-pi) how to calculate this?
@rshawty
@rshawty 3 жыл бұрын
azy j’ai lâché un like juste pour le début chu un gamin mdrr yaaaaaay
@shazullahyusufzai5704
@shazullahyusufzai5704 Жыл бұрын
Could you please solve this equation x^x=e
@zakichahboun543
@zakichahboun543 3 жыл бұрын
hello brother i have a question Can I replace e ^ (π) -e ^ (- π) with sinh (π) ?????
@apoorvvyas52
@apoorvvyas52 6 жыл бұрын
How to deal if the interval is between say any two numbers a and b rather than - pi to pi?
@AndDiracisHisProphet
@AndDiracisHisProphet 6 жыл бұрын
it gets ugly
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Definitely.
@maxwellsequation4887
@maxwellsequation4887 4 жыл бұрын
Intense
@sciencebyoliver6888
@sciencebyoliver6888 4 жыл бұрын
is this on a open interval from -pi to pi????
@shivimish9962
@shivimish9962 6 жыл бұрын
How do you test anything for convergence?
@emperorpingusmathchannel5365
@emperorpingusmathchannel5365 6 жыл бұрын
Intuitive proof for taylor and fourier series?
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
GLaDOS What exactly do you mean by proving them? They are definitions.
@nathanisbored
@nathanisbored 6 жыл бұрын
@@angelmendez-rivera351 they are not definitions, and he just proved them in a couple previous videos
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
nathanisbored He did not prove them. He explained what they are, why we want them, and how to get them.
@nathanisbored
@nathanisbored 6 жыл бұрын
@@angelmendez-rivera351 if they were just definitions, then we couldnt use them to derive other things about the functions they represent. for example we wouldnt be able to say the identity he showed at the end of the video is true. we can however define them to be extensions of the domain of a function (for example e^(ix) can be evaluated using the taylor series as a definition)
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
nathanisbored Your comment makes absolute nonsense, considering that everything in mathematics can only be derived from axioms and definitions. The definition of the Taylor series of a function f(x) is the power series with respect to x - a with the coefficient sequence [f^(n)](a)/n!. That has nothing to do with whether there is information about the function we can derive from this series or not. The series already uses information about the function inevitably. The reason we define e^x by its Taylor series is because the function is analytic and the series converges uniformly everywhere, so it occupies the same real domain as the previous definition, but with much more convenience of usage, and this analicity gives a continuation which permits for using this for complex numbers and elements of other topological spaces. That once again has nothing to do with these series being definitions and not theorems.
@miotegui
@miotegui 5 жыл бұрын
Could be possible that you made a mistake on the a0?. Shouldn't it be a0 = (e^pi - e^-pi)/pi ?
@Bayerwaldler
@Bayerwaldler 4 жыл бұрын
There are different definition for a0. The one bprp uses contains the factor 1/2.
@miotegui
@miotegui 4 жыл бұрын
@@Bayerwaldler Thanks!
@azharshah1397
@azharshah1397 4 жыл бұрын
Sir, can't we use the hyperbolic functions in this problem?
@thakkarsonal8585
@thakkarsonal8585 3 жыл бұрын
Kar sake hai
@kartiksharma7166
@kartiksharma7166 6 жыл бұрын
Pls do a video on the summation of x+ x^2 +x^4 + x^8+x^16 ... (inf) Yayayayayayayayayayayayayaya......👍👍👍👍👌👌👌👌this video deserves 💐💐💐💐
@owamaraayomide8597
@owamaraayomide8597 3 жыл бұрын
Why is cos(-nπ)=(-1)^n and cos(nπ)=(-1)^n
@soumyaranjanbehera5295
@soumyaranjanbehera5295 4 жыл бұрын
is cosnπ is equal to cos(-nπ) ,
@osuNoobCast
@osuNoobCast 6 жыл бұрын
13:15 what else would i like? i
@sanzao7487
@sanzao7487 5 жыл бұрын
Dude, ty!! when i was practicing, i thought that -pi in Sen(kx)-->(Senk-pi) it could not use the identity :c Viva!
@anntphone7727
@anntphone7727 2 жыл бұрын
How get 1 power n
@Jacob-uy8ox
@Jacob-uy8ox 6 жыл бұрын
Tetration of yays!
@nctbeducation3042
@nctbeducation3042 9 ай бұрын
Thanku bro
@ccuuttww
@ccuuttww 6 жыл бұрын
the problem is why we need to approximate the e?
@blackpenredpen
@blackpenredpen 6 жыл бұрын
I actually have been wanting to do that sum of (-1)^n/(1+n^2) so that's why I do these.
@VikasSingh-tw8wu
@VikasSingh-tw8wu 5 жыл бұрын
But the formula for fourier serious also includes 1/2 a0 ...which you didn't write
@Bayerwaldler
@Bayerwaldler 4 жыл бұрын
There are different definition for a0. The one bprp uses contains the factor 1/2.
@mafujmolla5069
@mafujmolla5069 2 жыл бұрын
Great💚
@_DD_15
@_DD_15 6 жыл бұрын
Lol I was gonna say why didn't you use sinh (pi), then I saw that your goal was something totally differe than showing the terms of e^(x) in terms of cos and sin.
@thomasblackwell9507
@thomasblackwell9507 5 жыл бұрын
COOL!
@jinijophy2974
@jinijophy2974 6 жыл бұрын
How did (1+n)^2 become 1+n^2?
@ffggddss
@ffggddss 6 жыл бұрын
It didn't. 1/(1 + n²) came from the factor of 1/(a² + b²) in the integrals, ∫eªˣ sin(bx) dx and ∫eªˣ cos(bx) dx; with a=1, b=n. Fred
@yossefbudagov8748
@yossefbudagov8748 6 жыл бұрын
Could you make a video proving the 1/pi approxiamation?
@rameshparamanikofwestbenga1742
@rameshparamanikofwestbenga1742 5 жыл бұрын
Right a0/2
@Bayerwaldler
@Bayerwaldler 4 жыл бұрын
There are different definition for a0. The one bprp uses contains the factor 1/2.
@adarshkumar3184
@adarshkumar3184 6 жыл бұрын
Hello ,did you the exact integral of (root over tan(X) +root over cot(X))dx . Please help me guy i'm in trouble
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
adarsh kumar What is that expression supposed to mean? More specifically, what exactly is “root over tan(x)”?
@adarshkumar3184
@adarshkumar3184 6 жыл бұрын
No friend , it is integral of (√(tan(x))+√(cot(x)) dx which is to be determined
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
adarsh kumar He already has a video on these. More specifically, he made a video on integrating the SqRt[tan(x)]. That answers half your question. As for SqRt[cot(x)], notice that cot(x) = tan(π/2 - x). As such, all you must do is perform the substitution u = π/2 - x, and your integrand will simply become a constant multiple of SqRt[tan(u)], and that answers the second part to your question.
@adarshkumar3184
@adarshkumar3184 6 жыл бұрын
@@angelmendez-rivera351 thanks a lot
@adarshkumar3184
@adarshkumar3184 6 жыл бұрын
@@angelmendez-rivera351 I've one more question that is integral of 1over (sin^4(x) +sin^2(X) cos^2(X) +cos^4(x)) whole multiple dx
@kutuboxbayzan5967
@kutuboxbayzan5967 5 жыл бұрын
Well i understanded proof but 1 think is not true e^-pi=lim x->-pi (f(x))=sum An*cos(nx)+bnsin(nx)=-sum An e^pi= lim x->pi(f(x))=sum Ancos(nx)+Bnsin(nx)=-sum An And this meaning e^-pi=e^pi then pi=0. Can you say my wrong?
@jyotirmoyroy7041
@jyotirmoyroy7041 5 жыл бұрын
@daniellazar4742
@daniellazar4742 6 жыл бұрын
Can you integrate (ln(1/x)+sqrt(x))/(x^2+sin(1/x^2)) ?
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
I am fairly certain this is not integrante using elementary functions.
@johnk3841
@johnk3841 6 жыл бұрын
I like foyay
@aniketmunde5733
@aniketmunde5733 3 жыл бұрын
tq
@greggregi6383
@greggregi6383 6 жыл бұрын
you got some big arms
@gian2kk
@gian2kk 6 жыл бұрын
Do you even lift bro
@JamalAhmadMalik
@JamalAhmadMalik 6 жыл бұрын
#yay I am a wannabe mathfreak!
@JamalAhmadMalik
@JamalAhmadMalik 6 жыл бұрын
I'm the happiest... You included: #yay #yay #yay
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Yay!!!!!
@KaanAkkoyunlu-b9u
@KaanAkkoyunlu-b9u 18 күн бұрын
🥶
@copperfield42
@copperfield42 6 жыл бұрын
:o this is more cute than the mess I got XD I didn't simplify those cos(nπ) and sin(nπ), but I transformed those exponential into sinh(π)
@blackpenredpen
@blackpenredpen 6 жыл бұрын
: )))
@sub2sub900
@sub2sub900 4 жыл бұрын
wrong
Quilt Challenge, No Skills, Just Luck#Funnyfamily #Partygames #Funny
00:32
Family Games Media
Рет қаралды 55 МЛН
The Limit (do not use L'Hospital rule)
12:08
blackpenredpen
Рет қаралды 697 М.
how to solve sin(x)=i?
10:42
blackpenredpen
Рет қаралды 210 М.
Fourier Series
16:36
MIT OpenCourseWare
Рет қаралды 502 М.
Solving x^5=1
9:49
blackpenredpen
Рет қаралды 198 М.
600 ELO Chess on lichess.org
sadisticTushi
Рет қаралды 852
You probably haven't solved a square root equation like this before
6:46
Fourier Series introduction
5:12
Khan Academy
Рет қаралды 1,3 МЛН