The best lecture video i've seen since Walter Lewin. Congratulations and thanks.
@Afxonidis4 жыл бұрын
That was maybe the best explanation I have ever heard of the quotient space. Brilliant work!
@shuaiwang56063 жыл бұрын
I tried to self study and different videos, your explanation is sooo clear and easy to understand, wish I could attend your class!!!!!
@lordeuler29128 жыл бұрын
Hölders and Cauchys inequality should both be multiplications and not additions.
@antoniolewis10167 жыл бұрын
yes
@benpovar39146 жыл бұрын
The prof. meant Minkowski inequality
@alexgoldhaber17866 жыл бұрын
The important thing now is that I learned how to pronounce ö as in Hölder!
@connorfrankston55485 жыл бұрын
@@benpovar3914 no, he must have made a mistake. The Cauchy-Schwarz inequality is definitely with multiplication, and the Hölder inequality too.
@adambruce16884 жыл бұрын
@@benpovar3914 Minkowski is slightly different. ||f+g||
@jean-pierrecoffe66666 жыл бұрын
Such a great lecture. Absolute clarity in all of the explanations
@mathjitsuteacher5 жыл бұрын
It is important to notice that the pointwise supremum of nonnegative measurable functions is also a nonnegative measurable function and this allows you to integrate it.
@timelsen22363 жыл бұрын
Greatest mathphysics on line, and loved the student interaction.
@RudranarayanPadhy-x6g Жыл бұрын
Wonderful teachig style with sufficient content covered less than 2 hours. Thank you sir.
@jwp40167 жыл бұрын
35:06 the measure of the pre image of z? Shouldn't it be the measure of the pre image of [z, infinity) ? Anyway, he is easily the best math teacher I've ever seen in my math learning journey.
@jwp40167 жыл бұрын
I missed 1:13:36
@joaodfbravo5 жыл бұрын
@@jwp4016 Why is it not just preim(z)?
@sardanapale23023 жыл бұрын
Yes ... in the sketch he did preim(z) has zero measure
@sardanapale23023 жыл бұрын
@@jwp4016 Its still false, on preim[0,z) f will be < z... you need preim[z,oo) so that on that set f >= z and you will get a lower bound of the integral of f...
@sardanapale23023 жыл бұрын
lol he finally corrects that afterwards :P
@AmatisoveLove8 жыл бұрын
This really is a great video, I'll definitely watch more of your lectures! Helped me a lot, thanks.
@circuithead944 жыл бұрын
The clarity of Schuller's explanation is amazing.
@stefanogioberti4 жыл бұрын
Such a clear lecturer. Makes the difficult easy. Many thanks.
@tim-701cca Жыл бұрын
Very clear. The set of your mistakes has measure zero.
@tim-701cca10 ай бұрын
At 1:09:43, (ii) lim \int |fn-f| = 0 , not only finite. (corrected) At 1:11:11 it can be R bar, with infinity since f,g are integrable, and therefore \int f is finite by definition.
@user-bk2fo7ny9s4 ай бұрын
this is elite level teaching ...
@ΣτέργιοςΚατσογιάννης7 жыл бұрын
1:20:50 Progress to the direction of Hilbert and Banach spaces... and why this matters when one does solid state physics!
@sisayketema34154 жыл бұрын
Dear Dr. i glads to follow such interesting lecture ...really really it was nice lecture. before this lecture i am not familiar with this concept after following your lecture things was clear for me thank you very much.keep it up
@michielsnoeken55963 жыл бұрын
Why is the singleton {s_i} measurable, since a singleton in the standard topology is not open and therefore also not an element of the sigma-algebra?
@HilbertXVI3 жыл бұрын
But the borel algebra contains a lot more than just open sets. You could write {s_i} as a countable intersection of the sets (s_i - 1/n, s_i + 1/n), each of which is open, and hence measurable. So the intersection {s_i} is also measurable.
@MrLikon73 жыл бұрын
there is an easier way to see this: the complement of a singleton is open in the standard topology. but the sigma-algebra is closed under complement-taking, so the singleton is in it. in fact, the borel sigma-algebra contains all the open AND closed sets, furthermore all the half-open intervals and so on
Just a remark teacher chaucy inequality with product not a sum : ||
@jacoboribilik32537 ай бұрын
Great lecture. Much appreciated.
@Anthony-db7ou3 жыл бұрын
I was the one who could be easily mislead by this. I haven’t taken measure theory formally, but need to learn more for my upcoming program in finance! You’re series is definitely unambiguously presenting the math, and I won’t say that about anything else I’ve come across. Any book recommendations?
@benwincelberg96842 жыл бұрын
Real Analysis by Royden
@lugia8888 Жыл бұрын
Needs more examples
@mastershooter64 Жыл бұрын
"A User-Friendly Introduction to Lebesgue Measure and Integration" by Gail S. Nelson, it is a really nice and friendly introduction to measure theory. Has lots of intuitive explanations and includes illustrations, all the while being completely rigorous.
@allwanamar18 жыл бұрын
this is an excellent lecture sir.
@Ciupakabrinas6 жыл бұрын
Thanks for the lecture! You make Lebesgue integration seem easy.:)
@wenzhang365 Жыл бұрын
Amazing lectures. Is there a textbook(s) for this course?
@jiahao27094 жыл бұрын
why these lectures, youtube don't have automatical translation?
@peterpalumbo36446 жыл бұрын
Are there any problem sheets for people viewing these lectures on You-Tube, are the Experimental lectures on You-Tube?
@fredxu98262 жыл бұрын
QM lectures turn out to be great for anyone interested to start functional analysis
@paulserna21045 жыл бұрын
It is clear and tidy.
@lisaking39965 жыл бұрын
I like his wavy norm sign
@farshadnoravesh4 жыл бұрын
a great lecture
@juliogodel7 жыл бұрын
Excellent lecture, Thanks.
@kevinmc79936 жыл бұрын
Very understandable
@ryanchiang95877 жыл бұрын
i remember these terminologies such as borel sets, sigma-algebras...etc.
@minexe3 жыл бұрын
thanks
@وسنحسينعلي-غ6ظ4 жыл бұрын
Please doctor, l need to solve this equations. : 1: show that the step function f (X) =[x] is measurable function on [1,3] And 2: if f is measurable function over a measurable set E then f is measurable over any measurable subset A of E