Frieze Patterns - Numberphile

  Рет қаралды 300,434

Numberphile

Numberphile

Күн бұрын

Пікірлер: 429
@N.I.R.A.T.I.A.S.
@N.I.R.A.T.I.A.S. 5 жыл бұрын
1:51 Stuff you hear on Numberphile: "This is a big one - seven." Also on Numberphile: *TREE(3)*
@numberphile
@numberphile 5 жыл бұрын
Ha ha. It’s all relative.
@proximacentauri8038
@proximacentauri8038 5 жыл бұрын
TREE(TREE^(TREE(TREE)))
@persereikanen6518
@persereikanen6518 5 жыл бұрын
@@proximacentauri8038 +1
@KohuGaly
@KohuGaly 5 жыл бұрын
@@persereikanen6518 +ω
@egilsandnes9637
@egilsandnes9637 5 жыл бұрын
The number of triangulations of a TREE(3)-gon is a tad bigger than TREE(3) though.
@Xormac2
@Xormac2 5 жыл бұрын
*ACCORDION NOISE INTENSIFIES*
@sarysa
@sarysa 5 жыл бұрын
At first I thought my office printer was malfunctioning...
@haskell_cat
@haskell_cat 5 жыл бұрын
I don't like it. How about a subtle "woosh" sound instead?
@alexbartoszek7348
@alexbartoszek7348 5 жыл бұрын
I’m now extremely aware of every accordion noise
@dan-gy4vu
@dan-gy4vu 5 жыл бұрын
I beg to differ. It sounds like an old counting machine and I honestly love that.
@jonathanbeeson8614
@jonathanbeeson8614 5 жыл бұрын
It seems that Brady has become over time much more active as an interlocutor in these Numberphile videos, and for me as a mathematical amateur that makes them much better. Thank you !
@MoPoppins
@MoPoppins 5 жыл бұрын
I thoroughly enjoy the Numberphile podcast. Every episode has been riveting, and I’m not even strong in math...just curious about useful things and interesting people that I don’t yet know about. Anyone who hasn’t subbed the podcast yet should DEFINITELY check it out. 👍
@Triantalex
@Triantalex Жыл бұрын
??
@Zwijger
@Zwijger 5 жыл бұрын
Now I understand why Conway is sick of the game of life, another mathematician talks so highly about him, so he probably has done some brilliant stuff, but most people know him only about that one game.
@dominiquelaurain6427
@dominiquelaurain6427 5 жыл бұрын
Yes, he has done a BIG work..in tiling, arithmetics and so on..that's why he is not so keen to enjoy publicity about a so small part of his lifetime masterwork. I guess Fermat would have not enjoyed to be known only by his famous conjecture.
@NatePrawdzik
@NatePrawdzik 5 жыл бұрын
First world problems.
@BlakeMiller
@BlakeMiller 4 жыл бұрын
Like Tchaikovsky
@genericusername4206
@genericusername4206 4 жыл бұрын
@@BlakeMiller Tchaikovsky is known for a lot of pieces though
@PC_Simo
@PC_Simo 2 жыл бұрын
It’s like Christopher Lee only being known for his role as Dracula.
@SubhashMirasi
@SubhashMirasi 5 жыл бұрын
A new professor.👏👏
@persereikanen6518
@persereikanen6518 5 жыл бұрын
He is a student
@martynaxyz6658
@martynaxyz6658 5 жыл бұрын
@@persereikanen6518 *read description*
@AleksandrMotsjonov
@AleksandrMotsjonov 5 жыл бұрын
Russian one, even better! =)
@persereikanen6518
@persereikanen6518 5 жыл бұрын
@@martynaxyz6658 Yes, he is still a student. Repiit.
@persereikanen6518
@persereikanen6518 5 жыл бұрын
@mxt mxt professor of a global warming? 😅
@chrismorong931
@chrismorong931 5 жыл бұрын
9:52 He's a ventriloquist
@mtiman1991
@mtiman1991 5 жыл бұрын
Plot twist: The Numberphile Mathematicians dont speak english, so the videos are translated
@Vaaaaadim
@Vaaaaadim 5 жыл бұрын
Mind Freak
@shmunkyman33
@shmunkyman33 5 жыл бұрын
I just assumed up until then he had been telepathically communicating the whole time and accidentally forgot to move his lips
@JorgetePanete
@JorgetePanete 5 жыл бұрын
@@mtiman1991 don't*
@mtiman1991
@mtiman1991 5 жыл бұрын
@@JorgetePanete really?
@eemikun
@eemikun 5 жыл бұрын
That feeling when he says "Two famous mathematicians, one of them unfortunately not with us" and the first picture you see is of John Conway D:
@cubing7276
@cubing7276 3 жыл бұрын
He is gone now :(
@johnmulhall5625
@johnmulhall5625 4 жыл бұрын
Conway will always be one of my favorite mathematicians. When I heard he died from covid, I was truly bummed.
@kenhaley4
@kenhaley4 5 жыл бұрын
Amazing how mathematicians can find correlations between seemingly totally unrelated concepts/phenomena. Nice video!
@adamfreed2291
@adamfreed2291 5 жыл бұрын
Much of Math is figuring out how two seemingly unrelated problems are actually the same problem in a different form.
@JuulSimon
@JuulSimon 5 жыл бұрын
The audio for the brown paper sections was strangely fantastic. Kinda reminded me of playing old DOS games.
@sashimanu
@sashimanu 5 жыл бұрын
DOS games had a much more versatile repertoire of midi notes!
@XenophonSoulis
@XenophonSoulis 5 жыл бұрын
@@sashimanu It was accordion.
@Czeckie
@Czeckie 5 жыл бұрын
No, I want to see the proof!
@Abdega
@Abdega 5 жыл бұрын
All patterns Frieze during the Russian Winters
@ericschuster2680
@ericschuster2680 5 жыл бұрын
lol
@BobStein
@BobStein 5 жыл бұрын
In mother Russia, patterns frieze you.
@riftinink
@riftinink 5 жыл бұрын
@@BobStein I'm living in Russia. Not all regions as cold as you think. For example Krasnodarskiy region, the least temperature hear is about -5 C° (sorry if some of sentences are obscure)
@Ri0ee
@Ri0ee 5 жыл бұрын
@@riftinink это была шутка
@riftinink
@riftinink 5 жыл бұрын
@@Ri0ee я уверен, что некоторые думают, что это правда
@arirahikkala
@arirahikkala 5 жыл бұрын
I didn't like the weird electric noises in the animations at first, but they really grew on me by the end of the video. Still not as satisfying as 3blue1brown's clacks, though.
@alephnull4044
@alephnull4044 5 жыл бұрын
The 3B1B nosies are therapeutic.
@Kaerulans
@Kaerulans 5 жыл бұрын
I think those might be sounds of an accordion
@Artaresto
@Artaresto 5 жыл бұрын
They are
@burtonlang
@burtonlang 5 жыл бұрын
I suppose they chose this sound because frieze patterns are arranged sorta like an accordion's buttons.
@juchemz
@juchemz 5 жыл бұрын
I didn't like them, even by the end
@HalcyonSerenade
@HalcyonSerenade 5 жыл бұрын
Brilliant choice of clip for John Conway: *"I'm not going to worry anymore! Ever. Again."*
@GijsvanDam
@GijsvanDam 5 жыл бұрын
The enthusiasm of the professor is contagious. Love to see more vids with him.
@spencerarnot
@spencerarnot 5 жыл бұрын
Not to be confused with Frieza forms. That’s a bit different.
@kəanıncupıdo
@kəanıncupıdo 5 жыл бұрын
DB Math.
@spencerarnot
@spencerarnot 5 жыл бұрын
@Vahseline On the complex Z plane
@randomdude9135
@randomdude9135 5 жыл бұрын
I was gonna make a comment on that 😭
@Blutsaugher
@Blutsaugher 5 жыл бұрын
And this ain't even its final form
@WritingMyOwnElegy
@WritingMyOwnElegy 5 жыл бұрын
are we there yet
@KillianDefaoite
@KillianDefaoite 4 жыл бұрын
4:31 Unfortunately John Conway is no longer with us either.
@catchara1496
@catchara1496 4 жыл бұрын
Oh no!
@Djaian2
@Djaian2 5 жыл бұрын
There is one thing the professor should not have done: he spoiled the fact that he would arrive at a line with only ones. Would have been better if he didn't say it early, and just, after some calculations suddenly produces a line of ones. And then, explain everything like he did. He could even have asked Brady: "What do you think, will this explodes to infinity with numbers getting bigger and bigger?"
@Lexivor
@Lexivor 5 жыл бұрын
This would have made it more dramatic, I like your idea.
@Petemackenshaw
@Petemackenshaw 4 жыл бұрын
"One of whom is sadly not with us anymore." Sigh.. Now neither are.
@wmpowell8
@wmpowell8 2 жыл бұрын
If you use a polygon to generate these patterns, you can connect a line from every vertex to a specific vertex and this creates an amusing pattern
@77Chester77
@77Chester77 5 жыл бұрын
Satisfying to see that mr Tabachnikov writes the "ones" with a hook on top :-)
@justinhoffman5339
@justinhoffman5339 5 жыл бұрын
Another way to think about the pattern is adding triangles onto the edges of the previous shape. Adding a triangle is effectively the same as inserting a 1 into the cycle, and incrementing the adjacent numbers because you're drawing a point (1) and connecting a line to 2 existing vertices. Starting with the simplest case (111), you can insert a 1 in front and get 1212, insert a 1 in the second position and get 2121, insert a 1 second last and get 1212, or insert a 1 at the end at get 2121. You keep the unique cycles (in this case 1212 and 2121) and continue the pattern of inserting 1's into those new cycles.
@KipIngram
@KipIngram 6 ай бұрын
I absolutely LOVE that Conway "I'm not going to worry any more, ever again" moment - as far as I'm concerned being able to come to such a point in one's life is the greatest achievement any of us could ask for, and I dearly hope he was successful in following through on that. As a counterpoint, I read once that a guy was interviewing Paul Dirac, fairly late in his life, and was stunned when Dirac told him that he really thought of his life's work as a failure. This is the guy who CREATED quantum field theory - our very very best theory of how nature works. And he thought of himself as a failure intellectually. That really makes me quite sad for him. A man like him should have gotten to be content with his accomplishments. Conway found the better path - that's for sure.
@JCW7100
@JCW7100 5 жыл бұрын
Love your videos so much! Thanks for the great content! :)
@cmusard3
@cmusard3 5 жыл бұрын
Is there accordion sounds bc the frieze grid looks like the accordion bass keyboard?
@xenontesla122
@xenontesla122 5 жыл бұрын
The sound design in the animated parts is on another level. I'm guessing the dot arrangement reminded the animator of a button accordion?
@Goryllo
@Goryllo 5 жыл бұрын
The sound effects during the animations are amazing! Great sound design as always, not to mention the interesting subject and the cool graphics...
@usualsuspect2259
@usualsuspect2259 5 жыл бұрын
What would have happened if we get, instead of shapes in 2D space, Shapes in 3D space and we triangulate them, if that's possible?
@JamesDavy2009
@JamesDavy2009 5 жыл бұрын
To look at the 3-D version, one would need to ask how many tetrahedra does the vertex in question have in common?
@usualsuspect2259
@usualsuspect2259 5 жыл бұрын
That's probably an approach
@andymcl92
@andymcl92 5 жыл бұрын
@@JamesDavy2009 Possibly a trivial question. Is it always possible to split a polyhedron into tetrahedra?
@JamesDavy2009
@JamesDavy2009 5 жыл бұрын
@@andymcl92 There's a question for the people of Numberphile.
@tempestaspraefert
@tempestaspraefert 5 жыл бұрын
There is exactly one (relevant) way to make an n-sided (convex) polygon. There are several possible ways to make an n-sided polyhedron (e.g. an n-1-sided pyramid or an n-2-sided prism). This makes it less likely that this also works in 3D, I think.
@rudyhero1995
@rudyhero1995 5 жыл бұрын
Like the video, didnt realy like the sound effects sounded a bit heavy or something
@aldasundimer
@aldasundimer 5 жыл бұрын
The beeps were annoying to be honest. But great video as you said.
@emilchandran546
@emilchandran546 5 жыл бұрын
Look up stradella bass system
@lfestevao
@lfestevao 5 жыл бұрын
I really digged this. The Polygon explanation shows why the sequence repeats to the right. Now I imagine it like the drawing is in the top of a Cylinder and the numbers are on the side. Then we go down filling the values like in the paper. In the end we go back to the trivial 1s row and can start over. This reflects as the Cylinder bending to make both bases meet, like a Thorus. This way I was able to see that the pattern repeats it self ALSO there's no orientation, so we can read clockwise OR counterclockwise. Going back to the paper examples on the video, this holds up, as it can be read and filled bottom to top. Furthermore the sequences repeat BEFORE reaching the trivial 1s. Maybe there is a Klein Bottle interpretation for this, but this was too much for me to imagine without doodling it up.
@Ecl1psed276
@Ecl1psed276 5 жыл бұрын
The sound effects in this one are on point :D Props to your editor!
@Sylocat
@Sylocat 5 жыл бұрын
Something I didn't notice until I showed my mom this video and she pointed it out, was that the nontrivial rows have vertical symmetry. The first and last rows are the same, just offset, as are the 2nd and 2nd-to-last rows, and so on.
@indiarnav
@indiarnav 5 жыл бұрын
Could you go through the recent proof for the sensitivity conjecture by Hao Huang? Seems like it could be an interesting topic under graph theory.
@veggiet2009
@veggiet2009 5 жыл бұрын
Whenever any number fact or theorem relate to geometry, I invariably will ask is this generizable to multiple dimensions in some way? Like if you divide a polyhedron into multiple tetrahedron, could you craft a number sequence from that and what mathematically properties would it have?
@navjotsaroa2518
@navjotsaroa2518 5 жыл бұрын
So could this be extrapolated to 3D solids and then even higher dimensions, where you would draw lines in order to make pyramids? If so, what would that look like and what difference would be made if we used triangular based pyramids or square based pyramids or one with any other base?
@FiniteJest
@FiniteJest 5 жыл бұрын
Algebraically it seems related to a determinant so you would need to relate 9 numbers together instead of the 4. It might work with stacking parallelpipeds, might be a fun research project.
@megusta9268
@megusta9268 4 жыл бұрын
rip john connoway
@liamvictor
@liamvictor 5 жыл бұрын
I get such joy from these videos. One day I might even understand some maths.
@Ojisan642
@Ojisan642 5 жыл бұрын
What a nice ending. They recognized the beauty of it first, and then later it became important.
@UnorthodoxSoundwave.
@UnorthodoxSoundwave. 5 жыл бұрын
I'm amazed that he didn't mention the patterns in the rows are mirrored on the grid: 1 1 1 1 1 1 1 1 1 1 (X - 1) _________________ (X) _________________ (X + 1) _________________ (X + 2) ... _________________ (N - 1) _________________ (N) 1 1 1 1 1 1 1 1 1 1 (N + 1) Like how X - 1 and N + 1 are the same pattern of 1 1 1, N and X would also follow the same sequence, as well as X + 1 and N - 1, and so on. Though the sequences don't start in the same column every time, they always shared the same one across the row.
@Bigandrewm
@Bigandrewm 5 жыл бұрын
I'm guessing that sound effect for drawing is a sampled accordion? Might be neat to modify that idea slightly by having a set of accordion notes which are chosen by some pattern referencing the video.
@pmcpartlan
@pmcpartlan 5 жыл бұрын
Yes, it was an accordion that I sampled a while ago, not sure it quite worked here (or maybe there was just too much of it). But yeah, working on this has made me want to do more fun systematic things with the sound design.
@penand_paper6661
@penand_paper6661 5 жыл бұрын
The sound effects are really on point.
@tomfryers2
@tomfryers2 5 жыл бұрын
The animator must've had fun with this one.
@3dplanet100
@3dplanet100 5 жыл бұрын
Amazing. Math is like a logic puzzle that everything is related and connected.
@АртурАбдуллин-ц4х
@АртурАбдуллин-ц4х 5 жыл бұрын
Найс рашен аксент. Гуд, намберфайл, вэри гуд!)
@jannegrey
@jannegrey 5 жыл бұрын
Did you just wrote English phonetically in Bukwa's? Sorry my Cyrillic is VERY slow.
@АртурАбдуллин-ц4х
@АртурАбдуллин-ц4х 5 жыл бұрын
@@jannegrey yes, you are right!)
@djkm9558
@djkm9558 5 жыл бұрын
Artur Abdullin???
@dmitry-dmitry
@dmitry-dmitry 5 жыл бұрын
Зато все понятно. Англичан носителей сложнее на слух воспринимать.
@user-tk2jy8xr8b
@user-tk2jy8xr8b 4 жыл бұрын
Zato vsyo ponyatno ;)
@pedroscoponi4905
@pedroscoponi4905 5 жыл бұрын
This was really cool :) I am all for more Prof. Sergei!
@msolec2000
@msolec2000 5 жыл бұрын
Yes! More about Catalan Numbers, please! They are awesome and they are EVERYWHERE!
@Kaesekuchen002
@Kaesekuchen002 5 жыл бұрын
And at 6:20 I was like: "wooooooow". Great video as always. I would like to see more with Professor Tabachnikov.
@dominiquelaurain6427
@dominiquelaurain6427 5 жыл бұрын
I like very much to read Tabachnikov's papers about geometry and mathematical billiards (I am recently interested in that "mathematic dynamics). Theory he works about are really deep bridges between big parts of mathematics. ...if you can interview the others (Richard Evan Schwarz, ..) it would be great. Billiards are deeply linked with physics and some math modeling.
@RunstarHomer
@RunstarHomer 2 жыл бұрын
I'm curious why the triangulations are considered different even if they're identical up to rotation. If you rotate the polygon, you still get the same frieze pattern, since they are periodic.
@GrapefruitGecko
@GrapefruitGecko 5 жыл бұрын
I want to know what this has to do with the Catalan numbers.... also how did Conway and Coxeter think to relate these two seemingly different ideas??
@jaydendickson
@jaydendickson 5 жыл бұрын
The catalan numbers are just the number of ways of partitioning the polygon into triangles.
@Sgrunterundt
@Sgrunterundt 5 жыл бұрын
2:34 What a miracle that all those fractions with denominator one turned out to be integers. I mean that the rest of the pattern holds is super interesting, but for the first calculated row it is hardly surprising that they are integers.
@assasinsbear
@assasinsbear 5 жыл бұрын
Good job on the sound desing in this video !
@richardgratton7557
@richardgratton7557 5 жыл бұрын
Best hand-written numbers ever, not like Grimes! :)
@Dudleymiddleton
@Dudleymiddleton 5 жыл бұрын
Like the sound effects!
@krahnjp
@krahnjp 5 жыл бұрын
I might have missed it, but I didn't hear mention about the fact that the last row of numbers (above the ones) seems to always be the same sequence as you entered, and the too middle rows are the same sequence of numbers as well. Does that mirroring of sequences across the board always hold true for all polygons?
@Vaaaaadim
@Vaaaaadim 5 жыл бұрын
This is just absolutely crazy, how on earth would anyone even see a connection like this!
@isaactfa
@isaactfa 5 жыл бұрын
I love these theorems that deal with natural number patterns. They seem the likeliest (from a complete layman's point of view) to crop up in nature and be useful someday.
@jakistam1000
@jakistam1000 5 жыл бұрын
Finally someone that writes the numbers the way I do! :D
@61rmd1
@61rmd1 5 жыл бұрын
Amazing, and well described...thanks a lot for this video
@jasonpatterson8091
@jasonpatterson8091 5 жыл бұрын
It's not really strange that the first row the professor determined was entirely made of integers. If the value is (WE-1) / N, and N is always 1, then of course it would be.
@skyjoe55
@skyjoe55 2 жыл бұрын
And positive because if W and E are positive then WE is positive and a positive minus 1 is either positive or zero (This only works if zero is not considered a positive number)
@scottmuck
@scottmuck 5 жыл бұрын
Well of COURSE I’m going to head over to Numberphile2 now.
@flumbofrommelkont6863
@flumbofrommelkont6863 5 жыл бұрын
For you see frieze, you're not dealing with your average mathematician anymore...
@technoguyx
@technoguyx 5 жыл бұрын
Beautiful and totally unexpected. That's how I like my mathematics :D
@elmo2you
@elmo2you 5 жыл бұрын
What a charming man. Also looks quite a bit younger than the 63 years he has.
@nemeczek67
@nemeczek67 5 жыл бұрын
Maybe he is 63 in base-7.
@mate_on_f7916
@mate_on_f7916 5 жыл бұрын
45?
@ramansb8924
@ramansb8924 5 жыл бұрын
But i don't understand how it works?? Please explain
@jimothyjimothy1
@jimothyjimothy1 5 жыл бұрын
math
@ramansb8924
@ramansb8924 5 жыл бұрын
@@jimothyjimothy1 thank you so much that helped me alot
@PPYTAO
@PPYTAO 5 жыл бұрын
Absolutely fascinating!
@carlosuzaier5858
@carlosuzaier5858 5 жыл бұрын
Vid is cool as always, but the guy here really takes the cake. His accent is so cool and his general vibe is nice
@francomiranda706
@francomiranda706 5 жыл бұрын
that equation S(N,E,W)=(NE+1)/W looks convieniently like a more general version of the triangle formula A(b,h)=(b+h)/2. Considering that in order to find these non-integer solutions, we have to solve for n iterations of S, something like S(S(N,E,W),E,W), could this be the connection to the trianglization?
@davidwilkie9551
@davidwilkie9551 5 жыл бұрын
There's a link with coordinate systems similar to 3D?
@enderwiggins8248
@enderwiggins8248 5 жыл бұрын
Kinda random, but I really appreciate your sound design, like the harpsichord when you’re transforming the polygons
@XenophonSoulis
@XenophonSoulis 5 жыл бұрын
It's accordion.
@tamirerez2547
@tamirerez2547 5 жыл бұрын
Please raise the salary of the voice man. He deserves it.
@SupriyoChowdhury5201
@SupriyoChowdhury5201 5 жыл бұрын
Please make a video on Robert langlands program
@meve5918
@meve5918 5 жыл бұрын
Is it significant that row 1 and row n contain the same numbers (with starting point shifted), as do rows 2 and n-1, 3 and n-2 etc?
@CCarrMcMahon
@CCarrMcMahon 5 жыл бұрын
Can you expand it infinitely to the right or left as long as you repeat the sequence?
@pukkandan
@pukkandan 5 жыл бұрын
Yes
@madanisihamdi2653
@madanisihamdi2653 5 жыл бұрын
Thank you MSRI
@n00dle_king
@n00dle_king 5 жыл бұрын
Sound design on point today.
@Ruddigore
@Ruddigore 5 жыл бұрын
A fascinating video. Thank you.
@tsbwarden5383
@tsbwarden5383 5 жыл бұрын
Why the gap between videos?
@venkatbabu186
@venkatbabu186 4 жыл бұрын
This is the basic pattern of metals and that's why they conduct electricity. Magnetic polarity works similar. Special pattern of surface symmetry.
@BeCurieUs
@BeCurieUs 5 жыл бұрын
All the little sound effects were fun, btw :D
@Henrix1998
@Henrix1998 5 жыл бұрын
How about WE-NS=a? I feel like there was so much he didn't touch at all
@YellowBunny
@YellowBunny 5 жыл бұрын
What about sin(W)*e^(E-N)+S^(W+E²*i)=a?
@evanmurphy4850
@evanmurphy4850 5 жыл бұрын
@@YellowBunny Trivial Obviously
@agentstache135
@agentstache135 5 жыл бұрын
Evan Murphy thus it is left as an exercise for the reader
@thejelambar82
@thejelambar82 5 жыл бұрын
Just multiply all of the number by a
@P21_c
@P21_c 5 жыл бұрын
@@thejelambar82 by the square root of a
@Wout680
@Wout680 4 жыл бұрын
4:27 Top and bottom are the same, second and second last are the same & the two middle ones are the same. Coincidence?
@Narokkurai
@Narokkurai 5 жыл бұрын
Interesting. So it's a way to numerically describe the construction of any polygon using triangles? I wonder if it has any applications in 3D graphics.
@DevashishGuptaOfficial
@DevashishGuptaOfficial 5 жыл бұрын
It does.
@anonsensename5101
@anonsensename5101 5 жыл бұрын
2:53 That's not strange, it's because N is always 1 and you divide by N. Dividing an integer by 1 never gives a fraction.
@RaymondJerome
@RaymondJerome 5 жыл бұрын
why is it n-3
@kbsanders
@kbsanders 5 жыл бұрын
9:52 Ventriloquism
@banjofries
@banjofries 5 жыл бұрын
huh, I remember seeing a few of those hexagon patterns in media in reference to things like "magic runes". Funny what people came up with without maths...
@pierremarcotte6299
@pierremarcotte6299 5 жыл бұрын
I love how he says: "pedioric" instead of "periodic". 0:59
@SocksWithSandals
@SocksWithSandals 4 жыл бұрын
Amazing. Has this phenomenon found any real-world use, like computing or encryption?
@ionutradulazar8984
@ionutradulazar8984 5 жыл бұрын
You can also notice that the k-th and (n-k)-th row are the same but shifted by an amount
@NonFatMead
@NonFatMead 5 жыл бұрын
Come for the numbers; stay for the sound effects.
@atrumluminarium
@atrumluminarium 5 жыл бұрын
Conway is fucking everywhere. Even though he's one of the most famous mathematicians, he's still pretty underrated.
@natheniel
@natheniel 5 жыл бұрын
The Russian/Slavic accent makes me [ r e d a c t e d ] and strangely patriotic.
@partygirl0101
@partygirl0101 5 жыл бұрын
hard?
@ciarfah
@ciarfah 5 жыл бұрын
I tend to be drawn to slavic mathematicians for some reason
@U014B
@U014B 5 жыл бұрын
Which SCP does it make you?
@georgemissailidis1504
@georgemissailidis1504 5 жыл бұрын
The sequence could also be the sequence for a recursive f(n)=(3^n+1)/2, unless you _reallY_ check if the heptagon has 42 solutions ;)
@ffggddss
@ffggddss 5 жыл бұрын
Frieze (leads to) number sandwich (leads to) cluster algebras. Cool!! A whole new mathematical world to explore! Fred
@mike3684
@mike3684 5 жыл бұрын
I haven't given it consideration past this posit, but could this be used for encryption??
@brachypelmasmith
@brachypelmasmith 5 жыл бұрын
so why are both solutions for square considered separate? If the thinf is periodic then its the same where you start (starting corner is not explicitly given) numbering so 1212 is the same as 2121, the same goes for several patterns for hexagons and higher?
5 жыл бұрын
Can you link the proof in the description, please (and tell me if/when you did)?
@nialltracey2599
@nialltracey2599 5 жыл бұрын
A few thoughts. Why is he treating the rotational symmetry as different solutions? The pattern produced is recurring and periodical -- a rotation of the polygon is just a "phase shift" of the wave periodicity of the function... n-3 is the number of lines required to triangulate the polygon. Surely no coincidence. Certainly worth noting I didn't notice any explicit mention of the fact that there's a sort of symmetry in the result, with the second last row being a rotation/phase shift of the second row and the 3rd last row being a rotation/phase shift of the 3rd row. Trivially, this is a necessary condition of their being only one solution (if the 2nd and 2nd last rows were different, this would mean there were at least two solutions by flipping it upside down, which would mean the link with the vertex numbering was broken). Again worth mentioning.
@kevinjackson745
@kevinjackson745 5 жыл бұрын
I didn't understand why we count the different rotations of triangulations of the n-gon as different friezes. They seem identical to me. Did anyone understand that?
@nemeczek67
@nemeczek67 5 жыл бұрын
To keep the relationship with the Catalan numbers.
The Dehn Invariant - Numberphile
15:33
Numberphile
Рет қаралды 543 М.
A Number Sequence with Everything - Numberphile
10:55
Numberphile
Рет қаралды 234 М.
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 18 МЛН
Beat Ronaldo, Win $1,000,000
22:45
MrBeast
Рет қаралды 146 МЛН
How Many Balloons To Make A Store Fly?
00:22
MrBeast
Рет қаралды 191 МЛН
math professor explains viral square root problem
13:09
Michael Penn
Рет қаралды 41 М.
The Problems with Secret Santa - Numberphile
11:00
Numberphile
Рет қаралды 1,9 МЛН
Frieze Patterns (extra) - Numberphile
4:53
Numberphile2
Рет қаралды 35 М.
Why this puzzle is impossible
19:37
3Blue1Brown
Рет қаралды 3,2 МЛН
Beautiful Trigonometry - Numberphile
12:07
Numberphile
Рет қаралды 826 М.
Don't Know (the Van Eck Sequence) - Numberphile
8:07
Numberphile
Рет қаралды 516 М.
The 60 Year Quest for the Perfect Sofa
26:06
Wrath of Math
Рет қаралды 33 М.
Complex Fibonacci Numbers?
20:08
Stand-up Maths
Рет қаралды 1 МЛН
A Number to the Power of a Matrix - Numberphile
16:45
Numberphile
Рет қаралды 70 М.
How to make railway timetables (with graphs) - Numberphile
8:43
Numberphile
Рет қаралды 732 М.
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 18 МЛН