from the MIT integration bee! 🐝

  Рет қаралды 35,625

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 121
@TechyMage
@TechyMage 2 жыл бұрын
Using kings rule u will get I= same upper and lower limit √2cos x/(9+16cos 2x) And after some painful simplification and substitutions u will get the final ans
@lavneetjanagal
@lavneetjanagal 4 жыл бұрын
It can be done much faster if you notice that sin(x)+cos(x) is actually the derivative of sin(x)-cos(x) . In the denominator 9+16 sin(2x) = 25-16(sin(x)-cos(x))^2 .And you have the final form of the integral -1 to 0 1/(25-16 u^2) . you can use partial fraction or trig substitution or contour to do this integral.
@goodplacetostop2973
@goodplacetostop2973 4 жыл бұрын
14:45 No homework today but I wish all the best to students about to start their finals.
@johnbailey8103
@johnbailey8103 4 жыл бұрын
Just finished all of mine, but thank you very much, I love all your post video homeworks ❤️
@calcul8er205
@calcul8er205 4 жыл бұрын
u=sinx-cosx allows you to get rid of the numerator then the denominator can be expressed as 25-16u^2
@megauser8512
@megauser8512 4 жыл бұрын
Yep, I saw that method/trick from this page: www.teachoo.com/4856/728/Misc-30---Definite-integral-0----pi-4-sin-x---cos-x/category/Miscellaneous/
@megauser8512
@megauser8512 4 жыл бұрын
And then here's how to get the formula used after that method: 1drv.ms/b/s!AvQhCl0SMET3ygVtkhZcUuC6HhOO?e=fv7ToI.
@riadsouissi
@riadsouissi 4 жыл бұрын
I used weierstrass substitution t=tan(x/2), ended up with an intimidating integral of 2(1+2t-t^2)/(9t^4-64t^3+18t^2+64t+9) between 0 and sqrt(2)-1 However, denominator can be factored into 2 second degrees polynomials. After painful manipulations (separating two denominator polynomials in separate fractions), I end up with integral of 1/40((18t+8)/(9t^2+8t+1)-(2t-8)/(t^2-8t+9)) = 1/40(log(9t^2+8t+1/t^2-8t+9). And this gives same result. Painful method but no tricks except the initial substitution.
@polyhistorphilomath
@polyhistorphilomath 4 жыл бұрын
This is the way.
@adityapandey4388
@adityapandey4388 2 жыл бұрын
Lol i got this question in my mid term exam in my school in india.
@hargunbirsingh6459
@hargunbirsingh6459 4 жыл бұрын
Take (sinx-cosx)= t, differentiate and put numerator=dt the then put sin2x= 1-t^2
@djvalentedochp
@djvalentedochp 4 жыл бұрын
I love integrals, so good seeing all those transformations till getting to a well known shape
@ii4511
@ii4511 4 жыл бұрын
You can complete the square for the denominator by +-7, and subbing in the basic identity for cos and sin, then use harmonic from, and finally a substitution
@mastermt5904
@mastermt5904 4 жыл бұрын
Also you can try using the identity integrate f(x) from upper limit a to lower limit b equals to f(a+b-x) from upper limit a to lower limit b
@tgx3529
@tgx3529 4 жыл бұрын
One more the solution for this problem is: We can take integral from (sqrt(2)*sin(π/4+x))/(9+16sin2x), then we take the substitution π/4+x=y, we have the integral from (sqrt(2) sin y)/(25-32*(cos^2)y) from π/4 till π/2, after the substitution cos y= k we have integral from sqrt(2)/(5+sqrt(32)k)*(5-sqrt(32)k) where k go from 0 till (sqrt2)/2.....finally we get the same result.
@riadsouissi
@riadsouissi 4 жыл бұрын
this is the more natural / less tricky way of solving it.
@tomasstride9590
@tomasstride9590 4 жыл бұрын
I did not press my approach on to the bitter end which I did before even looking at the video. But I think you can also use this: 9+16sin2x = 9+32sinxcosx= 9-(4sinx-4cosx)**2+16= 25-(4sinx-4cosx)**2 Now use difference of two squares formula and the partial fraction. You will see the part in the derivative of the brackets is more or less the numerator so the integrals are just logs.I am satisfied this works but did not go on to the bitter end.
@Eldar1on93
@Eldar1on93 4 жыл бұрын
From here it's u=sinx-cosx and (sinx+cosx)dx = du, u := -1...0, so integrate -1...0 (1/25-16u^2) du Great trick, I almost got there but missed (tried with (sinx+cosx)^2)
@qillerdaemon9331
@qillerdaemon9331 4 жыл бұрын
Fascinating to watch these videos. Penn starts from an equation with trig functions, and ends up with a solution with a natural log. I'm sure somewhere there is something that connects trig functions with natural log functions, but as a former chemist and now in IT infrastructure, I have absolutely no idea how. I mean, I barely got thru the mess that is physical chemistry. :(
@BenjersVeggie
@BenjersVeggie 4 жыл бұрын
There is! The antiderivative of tan(x) is -ln |cos(x)|, and the antiderivative of sec(x) is ln |sec(x)+tan(x)|, both treated as real-valued functions.
@polyhistorphilomath
@polyhistorphilomath 4 жыл бұрын
Or the logarithmic derivative is involved due to the form. It’s a sum of rational functions. Also -i log(cos z + i sin z) = z.
@paulmuaddib3761
@paulmuaddib3761 2 жыл бұрын
one way might be this: natural log is obviously related to e and e and sin and cos are related to each other by e^ix = cosx + isinx
@ramanakv3272
@ramanakv3272 4 жыл бұрын
Sin2x=1-(sinx-cosx)^2 and proceed by substitution method
@aliasgharheidaritabar9128
@aliasgharheidaritabar9128 4 жыл бұрын
It was so great.thank u for ur wonderful videos
@berzerksharma
@berzerksharma 4 жыл бұрын
this is a extended method , you can subtract and add 1 to the denominator, and use 1-sin2x in the denominator as (sinx-cosx)^2 and substitute the sinx-cosx = t and boom you are into the final steps
@manucitomx
@manucitomx 4 жыл бұрын
That was really cool. I hope it comes up in my tutoring next semester.
@mathssolverpoint6059
@mathssolverpoint6059 4 жыл бұрын
Use t = sinx +cosx
@tgx3529
@tgx3529 4 жыл бұрын
time 8:30. We can take the substitution t=sqrt(25-u)
@chessematics
@chessematics 4 жыл бұрын
Solve x"+ax=b×cos(wt+j) x=x(t), a,b,w, j are constants
@Tiqerboy
@Tiqerboy 4 жыл бұрын
Wow. I guess there's no faster way to solve that. Never would have gotten that since my calculus years are too far into the past but it was fun to follow your work.
@leadnitrate2194
@leadnitrate2194 Жыл бұрын
i like Michael's method, but as others have pointed out, there's a much faster way to solve it (sinx - cos x)² = 1 - sin2x sin2x = 1-(sinx-cosx)² Substitute this as the value of sin 2x and then substitute u = sin x - cosx du = (sin x + cos x)dx which lets you get rid of the denominator leaving you with a very standard integral
@mohammadalkousa2856
@mohammadalkousa2856 Жыл бұрын
Great! Recently it was published a book about MIT integration bee, under the title " MIT Integration Bee, Solutions of Qualifying Tests from 2010 to 2023" You can simply find it!
@whyyat3470
@whyyat3470 3 жыл бұрын
How was he able to switch the signs of the factors for the partial fraction decomposition at 11:45? The factors are 5-y and 5 + y...
@William_35
@William_35 3 жыл бұрын
Didn't he multiply the entire equation by -1 or am I missing something?
@nournote
@nournote 4 жыл бұрын
For partial fractions, it would be easier if you multiply only by (y-5) and replace y=5, that would give A directly, and then multiply by (y+5), replace by y=-5 and get B direclty without doing a system of 2 equations.
@aaaaansh4907
@aaaaansh4907 3 жыл бұрын
This question is taught to us for jee preparation as a particular type... I it's awesome
@nuranichandra2177
@nuranichandra2177 3 жыл бұрын
Superbly elegant
@higgy4596
@higgy4596 4 жыл бұрын
Can someone explain the simplification of 7:24? I don’t see how the 1/8 is being pulled out. How can he pull out it from inside the square root?
@zornslemmon2463
@zornslemmon2463 4 жыл бұрын
He pulls the 16 out, which becomes a 4 outside the square root. Now you have (1/32) * (1/(1/4)) = (1/32) * 4 = 1/8
@higgy4596
@higgy4596 4 жыл бұрын
@Zorn’s Lemmon I think I get it. Since he is taking a (1/16), the new expression would be sqrt(1/4)*sqrt(25-u). Then the 1/4 would flip because you would divide 1/(1/4) making the four on top which gives the 1/8 which you can pull out. Thank you very much!
@higgy4596
@higgy4596 4 жыл бұрын
@@zornslemmon2463 Thanks again!
@talkravarusic8489
@talkravarusic8489 4 жыл бұрын
Really fun content ! :)
@jonathanengwall2777
@jonathanengwall2777 4 жыл бұрын
At3:22, you have 1/ududx it is ugly but the numerator is gone. Why not solve it?
@Meverynoob
@Meverynoob 4 жыл бұрын
After subbing in u he's left with x terms, so he has to convert it into a u term, but the resulting integral has a complicated root so he performs another substitution t to kind of swap over, but that is still complicated so he substitutes y such that multiplying dt/dy removes the root from the denominator and the solution from there is straightforward.
@jonathanengwall2777
@jonathanengwall2777 4 жыл бұрын
@@MeverynoobI watched the entire video also, thank you. It appears to be a polar coordinates problem. Canceling from within the u term ruins the u term, I see, but I am commenting on the overworking of a 90 degree rotation. There is no need for a y term, only theta.
@muzankibutsuji5572
@muzankibutsuji5572 4 жыл бұрын
U can also do this by Sinx+cosxdx/9+16sin2x -(sinx+cosx)dx/16(1-sin2x)-25 -(sinx+cosx)dx/16(sinx-cosx)^2-25 Sinx-cosx=t -dt/16t^2-25 1/4*1/10ln(4t-a/4t+a)(I remember this formula of dx/x^2-a^2 proof is by partial fraction) Thus put proper limits from -1 to 0 u will get the answer
@winky32174
@winky32174 4 жыл бұрын
Another good one.
@monikaherath7505
@monikaherath7505 4 жыл бұрын
At what point does integration just become applying a bunch of known techniques and equation manipulation without really feeling or understanding what the integral means? I understood every step in the video but I had to go and literally plot out some of the graphs of the functions shown to get any hint of intuition to what it was trying to do.
@himanshuverma1580
@himanshuverma1580 4 жыл бұрын
First apply king property, then put sinx=t and then it become a simple formula based question
@himanshurathore2843
@himanshurathore2843 4 жыл бұрын
Yes this will be solve in short method.
@arihantbhansali
@arihantbhansali 4 жыл бұрын
Bro your solution is best
@abderrahmanelhamidy1620
@abderrahmanelhamidy1620 4 жыл бұрын
nice solution
@arpitdas4263
@arpitdas4263 4 жыл бұрын
I did this in a different way.I used the f(x)=f(a+b-x) property to simplify the integral and then expand sin and cos to obtain sin/1.41 (value of root 2) in the numerator.Then I substituted cos2x=(2cosx)^2 - 1 and finally substituted cosx as u to get an integral in the arctan form When I entered the value of this arctan in Wolfram Alpha,I obtained the same numerical expression being obtained through the logarithmic form,so I think my method works as well
@dingo_dude
@dingo_dude 4 жыл бұрын
what a delicious integral
@adityapandey4388
@adityapandey4388 2 жыл бұрын
I got this question in my midterm in class 11 lol
@muzankibutsuji5572
@muzankibutsuji5572 4 жыл бұрын
U could also have done by putting sinx +cosx=t sin2x would become t^2-1 then put t^2 =y
@rbdgr8370
@rbdgr8370 4 жыл бұрын
But then dx=dt/√2-t^2 would have posed problems
@muzankibutsuji5572
@muzankibutsuji5572 4 жыл бұрын
@@rbdgr8370 Sinx+cosxdx/9+16sin2x -(sinx+cosx)dx/16(1-sin2x)-25 -(sinx+cosx)dx/16(sinx-cosx)^2-25 Sinx-cosx=t -dt/16t^2-25 1/4*1/10ln(4t-a/4t+a)(I remember this formula of dx/x^2-a^2 proof is by partial fraction) Thus put proper limits from -1 to 0 u will get the answer
@muzankibutsuji5572
@muzankibutsuji5572 4 жыл бұрын
@@rbdgr8370 ignore the above msg
@zhusan2dui
@zhusan2dui 4 жыл бұрын
That is how I did this integral.
@oder4876
@oder4876 4 жыл бұрын
Man you have an factorisation error (25-y^2) = (5-y)(5+y) 11:40 not the opposite lol😉 but he will gave the same result at end A=B permutate but i will give you like 👍 what ever, to your hard word keep going and good luck
@faus2417
@faus2417 4 жыл бұрын
he canceled that effect by multiplying the other side by -1
@chessematics
@chessematics 4 жыл бұрын
Do Weierstaß substitution
@mastermt5904
@mastermt5904 4 жыл бұрын
I think you can use the t-formula for this question, that would be easier
@williamwarren5234
@williamwarren5234 4 жыл бұрын
Is this substituting t=tan(x/2)?
@mastermt5904
@mastermt5904 4 жыл бұрын
@@williamwarren5234 yes, you can also find sinx and cosx in terms of t
@paulconnor1040
@paulconnor1040 4 жыл бұрын
Tried it that way, it's not easier. Bigger, longer and more fiddly, lots of manipulation of surds of the form a+bsqrt{7}.
@marcososorio1885
@marcososorio1885 4 жыл бұрын
Steven dice que no es trivial
@factorization4845
@factorization4845 4 жыл бұрын
If you start with u=pi/4-x, then everything just simplifies quickly
@infinitygaming5808
@infinitygaming5808 4 жыл бұрын
I thought about it
@geometrydashmega238
@geometrydashmega238 4 жыл бұрын
To be honest this is the first substitution I did but then I got stuck. It wasn't easy for me :/ Edit: I got it. Just had to substitute cosu = t and do a bunch of calculations
@spartacus8875
@spartacus8875 4 жыл бұрын
Thank you....
@anthonyguerrera191
@anthonyguerrera191 4 жыл бұрын
Is it just me or is the PFD flipped
@VerSalieri
@VerSalieri 4 жыл бұрын
This was super fun!! Thank you.
@MuslimStoic123
@MuslimStoic123 4 жыл бұрын
It's is a easy problem I solved it in only one substitution And using king property Good content
@Yk.T
@Yk.T 4 жыл бұрын
Why MIT int calc competiton is called Integration "Bee" ?
@TJStellmach
@TJStellmach 4 жыл бұрын
It's an English term used for a competition (especially, but not necessarily, a spelling contest) or a gathering to pool labor (e.g. a "sewing bee").
@Pauldyke
@Pauldyke 4 жыл бұрын
14:14 ln(5) - ln(-5) is not zero.
@theloganator13
@theloganator13 4 жыл бұрын
Absolute value
@Pauldyke
@Pauldyke 4 жыл бұрын
@@theloganator13 Yh I noticed after I posted.
@2kworld9
@2kworld9 4 жыл бұрын
Just put sin x- cos x=k its a 2 minute question
@fancpleq6031
@fancpleq6031 4 жыл бұрын
Cosx-sinx should be substituted as from 0-π/4 cosx is greater than sinx
@ardak4000
@ardak4000 4 жыл бұрын
Wow I couldn't do it if sin2x=2sinx.cosx wouldn't given
@giuseppemalaguti435
@giuseppemalaguti435 2 жыл бұрын
1/40ln9....io lho fatto ponendo al posto di x......(pi/4)-x......
@legendarydisciplegaming4316
@legendarydisciplegaming4316 4 жыл бұрын
Need more problems on ramanujams
@user-A168
@user-A168 4 жыл бұрын
Good
@abraarmasud9194
@abraarmasud9194 4 жыл бұрын
Had this in our finals last year. Solved using king's rule. It'll be way shorter!
@stapler942
@stapler942 4 жыл бұрын
Honestly I think it depends on the exam because if you happen to know King's Rule and they want you to show all the steps, you might have to derive King's Rule first.
@abraarmasud9194
@abraarmasud9194 4 жыл бұрын
@@stapler942 our teacher was okay with it. So, win!
@pandas896
@pandas896 4 жыл бұрын
Very easy
@biolinux2307
@biolinux2307 2 жыл бұрын
Matemáticas 😎👍
@saiteja3885
@saiteja3885 4 жыл бұрын
May I know why mit ask too easy problems mainly in mathematics?
@divyanshaggarwal6243
@divyanshaggarwal6243 4 жыл бұрын
in the integration bee, the questions are usually easy but the point of the competition is to check the speed of the contestants.
@polyhistorphilomath
@polyhistorphilomath 4 жыл бұрын
@@divyanshaggarwal6243 which seems pointless. I think anyone in the bee or watching this video (willingly) would be capable of writing a program to express such solutions in terms of hypergeometric functions. The machine execution will be faster than manual calculations. Why bother?
@earlyaspirant3301
@earlyaspirant3301 4 жыл бұрын
It would be way easier if: 1.we write sin2x=1-(sq(sinx-cosx)) 2.Put sinx-cosx=t We will have dt=( sinx+cosx)dx same as numerator.
@debojitdeori4837
@debojitdeori4837 3 жыл бұрын
Classic question from indian ncert for 12 standard students
@advaykumar9726
@advaykumar9726 3 жыл бұрын
Yes
@anjaneyasharma322
@anjaneyasharma322 4 жыл бұрын
I have said so many times Trigo calculus is nonsense in its present form. Both lists of integrals and derivatives are useless. Take integrals of sinx from 0 to pi and integral of cosx from 0 to pi. If you draw the graphs you will find the integral should be equal as taking integral from 0 to pi/2 the result should be 2. But not so because the reaches are not aware of this mistake. Unknowingly fooling is going on from Newton Leibnitz times to this day. This is happening at MIT. So you can imagine the picture in rest of the world
@TechyMage
@TechyMage 2 жыл бұрын
Dekha apne laparwahi ka nateja
@aaryunik
@aaryunik 4 жыл бұрын
Hello!
@legendarydisciplegaming4316
@legendarydisciplegaming4316 4 жыл бұрын
Hi
@gamert2525
@gamert2525 3 жыл бұрын
Too easy problem
@CM63_France
@CM63_France 4 жыл бұрын
Hi, For fun: 1 "so the first thing that we would like to do is", 1 "so let's go ahead and do that", 3 "let's may be go ahead and", including 1 "so let's may be go ahead and use that", and 1 "so let's may be go ahead and write that", 1 "now I'll may be go ahead and", 1 "I can go ahead and", 1 "we need to go ahead and", 2 "ok, great", 1 "great",
@blackdeutrium746
@blackdeutrium746 4 жыл бұрын
❤️
@shreyashrao9583
@shreyashrao9583 3 жыл бұрын
I did it in 5 mins 👍 iam a 12 th grade student
@maxwellsequation4887
@maxwellsequation4887 4 жыл бұрын
Third?
@liviuliviu58487
@liviuliviu58487 4 жыл бұрын
i see 1 dislike. why would someone dislike this video?
@237_alifamirudin2
@237_alifamirudin2 4 жыл бұрын
ln 3 = 1
@earlyaspirant3301
@earlyaspirant3301 4 жыл бұрын
@@angelmendez-rivera351lol you didnt the joke baby.
@tobycooper4639
@tobycooper4639 4 жыл бұрын
Bruh as blackpenredpen would say, you're still in the y world. Gotta get back to x
@ShamJam85
@ShamJam85 4 жыл бұрын
to much maths! tooo much tedious isnt it?
@darreljones8645
@darreljones8645 4 жыл бұрын
The answer, rounded to two decimal places, is 21.97.
@ucduong2102
@ucduong2102 3 жыл бұрын
Nice bro but i have a better way to solve
@prabhatsharma5751
@prabhatsharma5751 4 жыл бұрын
2nd❤
@shd04109
@shd04109 4 жыл бұрын
I have only one suggestion. SPEAK UP PLS.
@Te4mRyouko
@Te4mRyouko 4 жыл бұрын
Yeah, the volume in his videos is kinda low compared to other videos on KZbin.
A great integral calculus review in one problem!!
19:26
Michael Penn
Рет қаралды 55 М.
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
Quilt Challenge, No Skills, Just Luck#Funnyfamily #Partygames #Funny
00:32
Family Games Media
Рет қаралды 55 МЛН
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 41 МЛН
This trick is new to me!
12:40
Michael Penn
Рет қаралды 60 М.
A nice integral.
12:59
Michael Penn
Рет қаралды 43 М.
An exponential trigonometric integral.
12:59
Michael Penn
Рет қаралды 30 М.
An aesthetic double integral.
21:05
Michael Penn
Рет қаралды 27 М.
What the 1869 MIT Entrance Exam Reveals About Math Today
13:51
polymathematic
Рет қаралды 66 М.
A crazy yet perfect integral
12:24
Maths 505
Рет қаралды 15 М.
The Reciprocals of Primes - Numberphile
15:31
Numberphile
Рет қаралды 1,6 МЛН
A viewer suggested floor integral!
11:46
Michael Penn
Рет қаралды 34 М.
so you want a HARD integral from the Berkeley Math Tournament
22:28
blackpenredpen
Рет қаралды 569 М.
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН