Using kings rule u will get I= same upper and lower limit √2cos x/(9+16cos 2x) And after some painful simplification and substitutions u will get the final ans
@lavneetjanagal4 жыл бұрын
It can be done much faster if you notice that sin(x)+cos(x) is actually the derivative of sin(x)-cos(x) . In the denominator 9+16 sin(2x) = 25-16(sin(x)-cos(x))^2 .And you have the final form of the integral -1 to 0 1/(25-16 u^2) . you can use partial fraction or trig substitution or contour to do this integral.
@goodplacetostop29734 жыл бұрын
14:45 No homework today but I wish all the best to students about to start their finals.
@johnbailey81034 жыл бұрын
Just finished all of mine, but thank you very much, I love all your post video homeworks ❤️
@calcul8er2054 жыл бұрын
u=sinx-cosx allows you to get rid of the numerator then the denominator can be expressed as 25-16u^2
@megauser85124 жыл бұрын
Yep, I saw that method/trick from this page: www.teachoo.com/4856/728/Misc-30---Definite-integral-0----pi-4-sin-x---cos-x/category/Miscellaneous/
@megauser85124 жыл бұрын
And then here's how to get the formula used after that method: 1drv.ms/b/s!AvQhCl0SMET3ygVtkhZcUuC6HhOO?e=fv7ToI.
@riadsouissi4 жыл бұрын
I used weierstrass substitution t=tan(x/2), ended up with an intimidating integral of 2(1+2t-t^2)/(9t^4-64t^3+18t^2+64t+9) between 0 and sqrt(2)-1 However, denominator can be factored into 2 second degrees polynomials. After painful manipulations (separating two denominator polynomials in separate fractions), I end up with integral of 1/40((18t+8)/(9t^2+8t+1)-(2t-8)/(t^2-8t+9)) = 1/40(log(9t^2+8t+1/t^2-8t+9). And this gives same result. Painful method but no tricks except the initial substitution.
@polyhistorphilomath4 жыл бұрын
This is the way.
@adityapandey43882 жыл бұрын
Lol i got this question in my mid term exam in my school in india.
@hargunbirsingh64594 жыл бұрын
Take (sinx-cosx)= t, differentiate and put numerator=dt the then put sin2x= 1-t^2
@djvalentedochp4 жыл бұрын
I love integrals, so good seeing all those transformations till getting to a well known shape
@ii45114 жыл бұрын
You can complete the square for the denominator by +-7, and subbing in the basic identity for cos and sin, then use harmonic from, and finally a substitution
@mastermt59044 жыл бұрын
Also you can try using the identity integrate f(x) from upper limit a to lower limit b equals to f(a+b-x) from upper limit a to lower limit b
@tgx35294 жыл бұрын
One more the solution for this problem is: We can take integral from (sqrt(2)*sin(π/4+x))/(9+16sin2x), then we take the substitution π/4+x=y, we have the integral from (sqrt(2) sin y)/(25-32*(cos^2)y) from π/4 till π/2, after the substitution cos y= k we have integral from sqrt(2)/(5+sqrt(32)k)*(5-sqrt(32)k) where k go from 0 till (sqrt2)/2.....finally we get the same result.
@riadsouissi4 жыл бұрын
this is the more natural / less tricky way of solving it.
@tomasstride95904 жыл бұрын
I did not press my approach on to the bitter end which I did before even looking at the video. But I think you can also use this: 9+16sin2x = 9+32sinxcosx= 9-(4sinx-4cosx)**2+16= 25-(4sinx-4cosx)**2 Now use difference of two squares formula and the partial fraction. You will see the part in the derivative of the brackets is more or less the numerator so the integrals are just logs.I am satisfied this works but did not go on to the bitter end.
@Eldar1on934 жыл бұрын
From here it's u=sinx-cosx and (sinx+cosx)dx = du, u := -1...0, so integrate -1...0 (1/25-16u^2) du Great trick, I almost got there but missed (tried with (sinx+cosx)^2)
@qillerdaemon93314 жыл бұрын
Fascinating to watch these videos. Penn starts from an equation with trig functions, and ends up with a solution with a natural log. I'm sure somewhere there is something that connects trig functions with natural log functions, but as a former chemist and now in IT infrastructure, I have absolutely no idea how. I mean, I barely got thru the mess that is physical chemistry. :(
@BenjersVeggie4 жыл бұрын
There is! The antiderivative of tan(x) is -ln |cos(x)|, and the antiderivative of sec(x) is ln |sec(x)+tan(x)|, both treated as real-valued functions.
@polyhistorphilomath4 жыл бұрын
Or the logarithmic derivative is involved due to the form. It’s a sum of rational functions. Also -i log(cos z + i sin z) = z.
@paulmuaddib37612 жыл бұрын
one way might be this: natural log is obviously related to e and e and sin and cos are related to each other by e^ix = cosx + isinx
@ramanakv32724 жыл бұрын
Sin2x=1-(sinx-cosx)^2 and proceed by substitution method
@aliasgharheidaritabar91284 жыл бұрын
It was so great.thank u for ur wonderful videos
@berzerksharma4 жыл бұрын
this is a extended method , you can subtract and add 1 to the denominator, and use 1-sin2x in the denominator as (sinx-cosx)^2 and substitute the sinx-cosx = t and boom you are into the final steps
@manucitomx4 жыл бұрын
That was really cool. I hope it comes up in my tutoring next semester.
@mathssolverpoint60594 жыл бұрын
Use t = sinx +cosx
@tgx35294 жыл бұрын
time 8:30. We can take the substitution t=sqrt(25-u)
@chessematics4 жыл бұрын
Solve x"+ax=b×cos(wt+j) x=x(t), a,b,w, j are constants
@Tiqerboy4 жыл бұрын
Wow. I guess there's no faster way to solve that. Never would have gotten that since my calculus years are too far into the past but it was fun to follow your work.
@leadnitrate2194 Жыл бұрын
i like Michael's method, but as others have pointed out, there's a much faster way to solve it (sinx - cos x)² = 1 - sin2x sin2x = 1-(sinx-cosx)² Substitute this as the value of sin 2x and then substitute u = sin x - cosx du = (sin x + cos x)dx which lets you get rid of the denominator leaving you with a very standard integral
@mohammadalkousa2856 Жыл бұрын
Great! Recently it was published a book about MIT integration bee, under the title " MIT Integration Bee, Solutions of Qualifying Tests from 2010 to 2023" You can simply find it!
@whyyat34703 жыл бұрын
How was he able to switch the signs of the factors for the partial fraction decomposition at 11:45? The factors are 5-y and 5 + y...
@William_353 жыл бұрын
Didn't he multiply the entire equation by -1 or am I missing something?
@nournote4 жыл бұрын
For partial fractions, it would be easier if you multiply only by (y-5) and replace y=5, that would give A directly, and then multiply by (y+5), replace by y=-5 and get B direclty without doing a system of 2 equations.
@aaaaansh49073 жыл бұрын
This question is taught to us for jee preparation as a particular type... I it's awesome
@nuranichandra21773 жыл бұрын
Superbly elegant
@higgy45964 жыл бұрын
Can someone explain the simplification of 7:24? I don’t see how the 1/8 is being pulled out. How can he pull out it from inside the square root?
@zornslemmon24634 жыл бұрын
He pulls the 16 out, which becomes a 4 outside the square root. Now you have (1/32) * (1/(1/4)) = (1/32) * 4 = 1/8
@higgy45964 жыл бұрын
@Zorn’s Lemmon I think I get it. Since he is taking a (1/16), the new expression would be sqrt(1/4)*sqrt(25-u). Then the 1/4 would flip because you would divide 1/(1/4) making the four on top which gives the 1/8 which you can pull out. Thank you very much!
@higgy45964 жыл бұрын
@@zornslemmon2463 Thanks again!
@talkravarusic84894 жыл бұрын
Really fun content ! :)
@jonathanengwall27774 жыл бұрын
At3:22, you have 1/ududx it is ugly but the numerator is gone. Why not solve it?
@Meverynoob4 жыл бұрын
After subbing in u he's left with x terms, so he has to convert it into a u term, but the resulting integral has a complicated root so he performs another substitution t to kind of swap over, but that is still complicated so he substitutes y such that multiplying dt/dy removes the root from the denominator and the solution from there is straightforward.
@jonathanengwall27774 жыл бұрын
@@MeverynoobI watched the entire video also, thank you. It appears to be a polar coordinates problem. Canceling from within the u term ruins the u term, I see, but I am commenting on the overworking of a 90 degree rotation. There is no need for a y term, only theta.
@muzankibutsuji55724 жыл бұрын
U can also do this by Sinx+cosxdx/9+16sin2x -(sinx+cosx)dx/16(1-sin2x)-25 -(sinx+cosx)dx/16(sinx-cosx)^2-25 Sinx-cosx=t -dt/16t^2-25 1/4*1/10ln(4t-a/4t+a)(I remember this formula of dx/x^2-a^2 proof is by partial fraction) Thus put proper limits from -1 to 0 u will get the answer
@winky321744 жыл бұрын
Another good one.
@monikaherath75054 жыл бұрын
At what point does integration just become applying a bunch of known techniques and equation manipulation without really feeling or understanding what the integral means? I understood every step in the video but I had to go and literally plot out some of the graphs of the functions shown to get any hint of intuition to what it was trying to do.
@himanshuverma15804 жыл бұрын
First apply king property, then put sinx=t and then it become a simple formula based question
@himanshurathore28434 жыл бұрын
Yes this will be solve in short method.
@arihantbhansali4 жыл бұрын
Bro your solution is best
@abderrahmanelhamidy16204 жыл бұрын
nice solution
@arpitdas42634 жыл бұрын
I did this in a different way.I used the f(x)=f(a+b-x) property to simplify the integral and then expand sin and cos to obtain sin/1.41 (value of root 2) in the numerator.Then I substituted cos2x=(2cosx)^2 - 1 and finally substituted cosx as u to get an integral in the arctan form When I entered the value of this arctan in Wolfram Alpha,I obtained the same numerical expression being obtained through the logarithmic form,so I think my method works as well
@dingo_dude4 жыл бұрын
what a delicious integral
@adityapandey43882 жыл бұрын
I got this question in my midterm in class 11 lol
@muzankibutsuji55724 жыл бұрын
U could also have done by putting sinx +cosx=t sin2x would become t^2-1 then put t^2 =y
@rbdgr83704 жыл бұрын
But then dx=dt/√2-t^2 would have posed problems
@muzankibutsuji55724 жыл бұрын
@@rbdgr8370 Sinx+cosxdx/9+16sin2x -(sinx+cosx)dx/16(1-sin2x)-25 -(sinx+cosx)dx/16(sinx-cosx)^2-25 Sinx-cosx=t -dt/16t^2-25 1/4*1/10ln(4t-a/4t+a)(I remember this formula of dx/x^2-a^2 proof is by partial fraction) Thus put proper limits from -1 to 0 u will get the answer
@muzankibutsuji55724 жыл бұрын
@@rbdgr8370 ignore the above msg
@zhusan2dui4 жыл бұрын
That is how I did this integral.
@oder48764 жыл бұрын
Man you have an factorisation error (25-y^2) = (5-y)(5+y) 11:40 not the opposite lol😉 but he will gave the same result at end A=B permutate but i will give you like 👍 what ever, to your hard word keep going and good luck
@faus24174 жыл бұрын
he canceled that effect by multiplying the other side by -1
@chessematics4 жыл бұрын
Do Weierstaß substitution
@mastermt59044 жыл бұрын
I think you can use the t-formula for this question, that would be easier
@williamwarren52344 жыл бұрын
Is this substituting t=tan(x/2)?
@mastermt59044 жыл бұрын
@@williamwarren5234 yes, you can also find sinx and cosx in terms of t
@paulconnor10404 жыл бұрын
Tried it that way, it's not easier. Bigger, longer and more fiddly, lots of manipulation of surds of the form a+bsqrt{7}.
@marcososorio18854 жыл бұрын
Steven dice que no es trivial
@factorization48454 жыл бұрын
If you start with u=pi/4-x, then everything just simplifies quickly
@infinitygaming58084 жыл бұрын
I thought about it
@geometrydashmega2384 жыл бұрын
To be honest this is the first substitution I did but then I got stuck. It wasn't easy for me :/ Edit: I got it. Just had to substitute cosu = t and do a bunch of calculations
@spartacus88754 жыл бұрын
Thank you....
@anthonyguerrera1914 жыл бұрын
Is it just me or is the PFD flipped
@VerSalieri4 жыл бұрын
This was super fun!! Thank you.
@MuslimStoic1234 жыл бұрын
It's is a easy problem I solved it in only one substitution And using king property Good content
@Yk.T4 жыл бұрын
Why MIT int calc competiton is called Integration "Bee" ?
@TJStellmach4 жыл бұрын
It's an English term used for a competition (especially, but not necessarily, a spelling contest) or a gathering to pool labor (e.g. a "sewing bee").
@Pauldyke4 жыл бұрын
14:14 ln(5) - ln(-5) is not zero.
@theloganator134 жыл бұрын
Absolute value
@Pauldyke4 жыл бұрын
@@theloganator13 Yh I noticed after I posted.
@2kworld94 жыл бұрын
Just put sin x- cos x=k its a 2 minute question
@fancpleq60314 жыл бұрын
Cosx-sinx should be substituted as from 0-π/4 cosx is greater than sinx
@ardak40004 жыл бұрын
Wow I couldn't do it if sin2x=2sinx.cosx wouldn't given
@giuseppemalaguti4352 жыл бұрын
1/40ln9....io lho fatto ponendo al posto di x......(pi/4)-x......
@legendarydisciplegaming43164 жыл бұрын
Need more problems on ramanujams
@user-A1684 жыл бұрын
Good
@abraarmasud91944 жыл бұрын
Had this in our finals last year. Solved using king's rule. It'll be way shorter!
@stapler9424 жыл бұрын
Honestly I think it depends on the exam because if you happen to know King's Rule and they want you to show all the steps, you might have to derive King's Rule first.
@abraarmasud91944 жыл бұрын
@@stapler942 our teacher was okay with it. So, win!
@pandas8964 жыл бұрын
Very easy
@biolinux23072 жыл бұрын
Matemáticas 😎👍
@saiteja38854 жыл бұрын
May I know why mit ask too easy problems mainly in mathematics?
@divyanshaggarwal62434 жыл бұрын
in the integration bee, the questions are usually easy but the point of the competition is to check the speed of the contestants.
@polyhistorphilomath4 жыл бұрын
@@divyanshaggarwal6243 which seems pointless. I think anyone in the bee or watching this video (willingly) would be capable of writing a program to express such solutions in terms of hypergeometric functions. The machine execution will be faster than manual calculations. Why bother?
@earlyaspirant33014 жыл бұрын
It would be way easier if: 1.we write sin2x=1-(sq(sinx-cosx)) 2.Put sinx-cosx=t We will have dt=( sinx+cosx)dx same as numerator.
@debojitdeori48373 жыл бұрын
Classic question from indian ncert for 12 standard students
@advaykumar97263 жыл бұрын
Yes
@anjaneyasharma3224 жыл бұрын
I have said so many times Trigo calculus is nonsense in its present form. Both lists of integrals and derivatives are useless. Take integrals of sinx from 0 to pi and integral of cosx from 0 to pi. If you draw the graphs you will find the integral should be equal as taking integral from 0 to pi/2 the result should be 2. But not so because the reaches are not aware of this mistake. Unknowingly fooling is going on from Newton Leibnitz times to this day. This is happening at MIT. So you can imagine the picture in rest of the world
@TechyMage2 жыл бұрын
Dekha apne laparwahi ka nateja
@aaryunik4 жыл бұрын
Hello!
@legendarydisciplegaming43164 жыл бұрын
Hi
@gamert25253 жыл бұрын
Too easy problem
@CM63_France4 жыл бұрын
Hi, For fun: 1 "so the first thing that we would like to do is", 1 "so let's go ahead and do that", 3 "let's may be go ahead and", including 1 "so let's may be go ahead and use that", and 1 "so let's may be go ahead and write that", 1 "now I'll may be go ahead and", 1 "I can go ahead and", 1 "we need to go ahead and", 2 "ok, great", 1 "great",
@blackdeutrium7464 жыл бұрын
❤️
@shreyashrao95833 жыл бұрын
I did it in 5 mins 👍 iam a 12 th grade student
@maxwellsequation48874 жыл бұрын
Third?
@liviuliviu584874 жыл бұрын
i see 1 dislike. why would someone dislike this video?
@237_alifamirudin24 жыл бұрын
ln 3 = 1
@earlyaspirant33014 жыл бұрын
@@angelmendez-rivera351lol you didnt the joke baby.
@tobycooper46394 жыл бұрын
Bruh as blackpenredpen would say, you're still in the y world. Gotta get back to x
@ShamJam854 жыл бұрын
to much maths! tooo much tedious isnt it?
@darreljones86454 жыл бұрын
The answer, rounded to two decimal places, is 21.97.
@ucduong21023 жыл бұрын
Nice bro but i have a better way to solve
@prabhatsharma57514 жыл бұрын
2nd❤
@shd041094 жыл бұрын
I have only one suggestion. SPEAK UP PLS.
@Te4mRyouko4 жыл бұрын
Yeah, the volume in his videos is kinda low compared to other videos on KZbin.