9:02 By the way, it is not necessary for A to be bounded: it is suffisent to show A is point-wise bounded to apply Ascoli Theorem. i.e. {g(x)/g in A} bounded for each x in [0,1]
@TavinCole2 жыл бұрын
Where is this particular formulation of Arzela-Ascoli written up?
@zachchairez45684 жыл бұрын
10 minutes with you >> 1 week in class
@felipegomabrockmann27404 жыл бұрын
I am totally agree
@jonasw47912 жыл бұрын
great video! the series is amazing 😊 at 9:20 I dont understand why bounded and equicontinuity holds for the closure as well?
@brightsideofmaths2 жыл бұрын
Indeed, this is something you could try to prove. Maybe start with bounded and then check equicontinuity.
@Jooolse2 жыл бұрын
@@brightsideofmaths When applying the Ascoli Theorem, we don't need to worry about the closure: if A is equicontinuous and pointwise bounded, then A is relatively compact = its closure is compact.
@brightsideofmaths2 жыл бұрын
@@Jooolse Thanks. Still something one needs to prove :)
@Jooolse2 жыл бұрын
@@brightsideofmaths Hmm to prove what? I just stated the conditions of the Ascoli Theorem! The conditions are on A and you get the compactness of its closure Ā :) A is relatively compact (i.e. Ā is compact) A is equicontinuous and pointwise bounded.
@brightsideofmaths2 жыл бұрын
@@Jooolse But that the closure is also equicontinuous one has to prove, right?
@AadityaVicramSaraf Жыл бұрын
I'm couldn't really understand what happened at 3:53 for a particular f in C[0,1], how and why are you defining Tf at s with another function k? What is the purpose of this k, and how did it come, in the first place?
@brightsideofmaths Жыл бұрын
Thanks for the question! We define an operator by using a kernel function k. So for a given k, we get an operator T by the chosen definition.
@aleksherstyuk83194 жыл бұрын
This might come in a later video, but what can we say about compact operators? Why would it be nice to know that an operator is compact?
@brightsideofmaths4 жыл бұрын
This will eventually come, yes! However, compact operators have some nice properties, a simple spectral theorem and other things. Therefore, if you know that an operator is compact, you know immediately a lot of things. We will discuss this :)
@marcuslaurel57584 жыл бұрын
There’s a cool theorem called the Leray-Schauder fixed point theorem, which requires a compact operator in one of its hypotheses. It’s a theorem that can be used to prove the existence of solutions for certain types of nonlinear PDE, which is pretty neat!
@Jooolse2 жыл бұрын
8:40 uniformly -> uniformely -> uniformly 👀
@brightsideofmaths2 жыл бұрын
Yeah, I corrected the typo.
@spin77654 жыл бұрын
Excellent video!
@brightsideofmaths4 жыл бұрын
Thanks :)
@ativjoshi10492 жыл бұрын
4:30 Is T_k a distribution?
@brightsideofmaths2 жыл бұрын
Not quite. A distribution has numbers as the codomain.
@StratosFair2 жыл бұрын
How to show that the closure of an equicontinuous set of functions is equicontinuous though ?
@brightsideofmaths2 жыл бұрын
Very good question! This is indeed not totally clear. It is helpful to try to prove it :)
@StratosFair2 жыл бұрын
@@brightsideofmaths challenge accepted !
@kellyramsay48964 жыл бұрын
What software do you use to write the math? Also love your videos thanks for these!
@brightsideofmaths4 жыл бұрын
Xournal and many thanks :)
@lissiecoutts98084 жыл бұрын
So helpful! Thank you :)
@ferry718510 ай бұрын
can I ask for verification. if the operator is bounded, we can also say that image of B_1(0) of T also bounded?
@brightsideofmaths10 ай бұрын
Yes, indeed :)
@trondsaue7860 Жыл бұрын
As usual, great ! Will there be anything about Hilbert-Schmidt operators ?
@brightsideofmaths Жыл бұрын
Thank you very much! I like Hilbert-Schmidt operators and can definitely make a video about them!