Langchain RAG Course: From Basics to Production-Ready RAG Chatbot

  Рет қаралды 19,705

Pradip Nichite

Pradip Nichite

Күн бұрын

Build a production-ready Retrieval-augmented generation (RAG) chatbot that can answer questions based on your own documents using Langchain. This comprehensive tutorial guides you through creating a multi-user chatbot with FastAPI backend and Streamlit frontend, covering both theory and hands-on implementation.
Topics covered:
RAG fundamentals and applications
Langchain basics and LCEL
Document processing and vector databases
Building conversational RAG chains
Multi-user chatbot development
FastAPI integration
Streamlit interface creation
By the end of this video, you'll have built a functional AI chatbot capable of answering questions based on custom data sources.
For code samples and additional resources, visit our blog: blog.futuresma...
#Langchain #RAG #ragchatbot #llm

Пікірлер: 91
@Pratik345-b1y
@Pratik345-b1y 2 ай бұрын
This is the best explanation of RAG ever given by anyone - Detailed + Beginner to Advanced. One suggestion, we need a playlist for Gen AI and Agentic AI to follow in sequence, currently it's hard to navigate over youtube channel !!
@FutureSmartAI
@FutureSmartAI 2 ай бұрын
Great suggestion!
@santudam35
@santudam35 4 күн бұрын
One of the best video i came across to learn the LangChain and RAG to build the AI Application from basic. Thanks for the the awesome work !!
@FutureSmartAI
@FutureSmartAI 19 сағат бұрын
Glad it was helpful!
@GuaravBansal-l2y
@GuaravBansal-l2y Ай бұрын
This is best production level RAG code. That is what I was looking for.
@Pratik345-b1y
@Pratik345-b1y 11 күн бұрын
Please keep uploading more videos/tutorial like this to share your knowledge - Its very much helpful or if possible please launch a course on Gen AI + AI Agent as well !! You are doing an fantastic job - Reaching million subscribers soon 💯
@Mostafa_Sharaf_4_9
@Mostafa_Sharaf_4_9 2 ай бұрын
I really missed your videos, and now you have come back with a comprehensive and wonderful video that solved a lot of my problems, so thank you and I hope you continue.
@FutureSmartAI
@FutureSmartAI 2 ай бұрын
Great to hear!
@GaneshMandpe-y6w
@GaneshMandpe-y6w 12 күн бұрын
This is the best video on KZbin if anyone wants to learn RAG. Great job Pradip, very very impressive work mate!!
@FutureSmartAI
@FutureSmartAI 6 күн бұрын
Thanks for the kind words! I put a lot of effort into making this video informative and helpful.
@aidev8926
@aidev8926 2 ай бұрын
Please keep uploading like this exquisite content. Thank you!
@AshisRaj
@AshisRaj 2 ай бұрын
Excellent work brother. Very lucid explanation. It will even help the season developer to refine their understanding of the concepts. Looking forward for more such videos like these. You have earned my respect and a subscriber :).
@FutureSmartAI
@FutureSmartAI 2 ай бұрын
Glad it was helpful!
@pravinthombal9787
@pravinthombal9787 5 күн бұрын
excellent work
@FutureSmartAI
@FutureSmartAI 4 күн бұрын
Thanks for the visit
@rajudk9132
@rajudk9132 2 ай бұрын
Timestamp RAG: 31:27 Embedding: 38:07
@vivekshindeVivekShinde
@vivekshindeVivekShinde Ай бұрын
Much needed. What an explanation. Thanks a lot 🙌🏻
@FutureSmartAI
@FutureSmartAI Ай бұрын
Glad it was helpful!
@sadiasiddique6254
@sadiasiddique6254 2 ай бұрын
Great video! Could you please create one on combining fine-tuning with Retrieval-Augmented Generation (RAG) for chatbots? Fine-tuning can be costly for certain use cases, but applying it selectively to establish the tone or behavior of RAG models could be highly efficient. This would be useful for instances where we want the model to follow a specific conversational style without extensive, full-scale fine-tuning
@alexramos587
@alexramos587 2 ай бұрын
Nice series. Please keep uploading.
@satyamchoudhary2573
@satyamchoudhary2573 Ай бұрын
bhai, what an explaination! just wow
@sangram7153
@sangram7153 2 ай бұрын
Excellent
@duetplay4551
@duetplay4551 15 күн бұрын
Nothing...Just log in to say "Merry Christmas and Happy New Year!" to Professor Pradip and other "classmates"🥳
@FutureSmartAI
@FutureSmartAI 13 күн бұрын
Merry Christmas and Happy New Year to you too!
@yazanrisheh5127
@yazanrisheh5127 2 ай бұрын
Hello Pradip, could you make a video on how can we split based on the ranking of the employee in an organization? For example executives would have access to financials but a junior would have access to a guide documentation
@rajank2909
@rajank2909 2 ай бұрын
very important and great videos please keep posting , how can we store unstructured data like table and image in vector db
@honor1498
@honor1498 2 ай бұрын
Awesome sir thanks a lot I have a request sir please make a vedio on integrating diagram generation feature also in this chatbot sir it helps alot sir
@Net4XInnovation
@Net4XInnovation Күн бұрын
This is the best course about RAG and langchain i saw, thank you so much. how about if we need to connect a relational DB as a RAG source instead of documents uploaded, do you have anything about this please?
@FutureSmartAI
@FutureSmartAI 19 сағат бұрын
Thanks check this tuorial kzbin.info/www/bejne/nKTWZ3aooraIaLssi=VHW6PUqhgtofJw_8 If you want to combine RAG and NL2SQL in single agent check this blog.futuresmart.ai/multi-agent-system-with-langgraph
@eige2992
@eige2992 11 күн бұрын
Hello, I've encountered an error when I try to embed the documents. Error Code: 403 Project doesn't have access to model 'text-embedding-ada-002". Can you help me solve this?
@Danyal_alam
@Danyal_alam 2 ай бұрын
it was such a great course. We can deploy this application on azure or aws also ? not only streamlit right?
@FutureSmartAI
@FutureSmartAI 2 ай бұрын
Yes you can deploy this app anywhere
@iamsatyajit963
@iamsatyajit963 Ай бұрын
Best explanation and the code walkthrough is amazing. Bdw, where can i get the documentsthat you have used in the code?
@FutureSmartAI
@FutureSmartAI Ай бұрын
Link in the description that has code and docs
@saikrishna235
@saikrishna235 2 ай бұрын
Great explanation! Where can I find the code/notebook present in the video?
@FutureSmartAI
@FutureSmartAI 2 ай бұрын
link In the description
@satyamchoudhary2573
@satyamchoudhary2573 Ай бұрын
please make video on all topics in same way
@robrita
@robrita 2 ай бұрын
thank you!!
@Pratik345-b1y
@Pratik345-b1y 4 күн бұрын
Getting this error : openai.OpenAIError: The api_key client option must be set either by passing api_key to the client or by setting the OPENAI_API_KEY environment variable : Any idea ?
@celestialgamer360
@celestialgamer360 Күн бұрын
if you don't have openai api key you will often counter error so, try to use open source model
@mithunmahato309
@mithunmahato309 2 ай бұрын
One thing i can't understand is : what is context ? In the example 52:00 you put all the document as context.
@FutureSmartAI
@FutureSmartAI 2 ай бұрын
The context consists of relevant documents retrieved from a vector database. These documents are processed to extract only the page content, excluding metadata, and all content is combined into a single long string, with each document separated by two newline characters.
@tajudeensanni9240
@tajudeensanni9240 2 ай бұрын
Nice one! please, the blog post seems not to be opening.
@xxtinct_seldom_species
@xxtinct_seldom_species 2 ай бұрын
How can be save tokens. every time we hit LLM or open AI. we consume some tokens. and token are pricey right? how do we save them ?
@rajatsrivastava9353
@rajatsrivastava9353 2 ай бұрын
my langsmith account is showing: Failed to execute 'getReader' on 'ReadableStream': ReadableStreamDefaultReader constructor can only accept readable streams that are not yet locked to a reader || how to resolve this?
@ArunKumar-bp5lo
@ArunKumar-bp5lo 2 ай бұрын
Finally
@umer_c0des330
@umer_c0des330 2 ай бұрын
In newer version of langchain v0.3, these chains has been deprecated, in favor of the more flexible and powerful frameworks of LCEL and LangGraph. Then, why do you prefer to use these chain??
@FutureSmartAI
@FutureSmartAI 2 ай бұрын
I've also demonstrated in the video how to achieve similar functionality without this specific chain, using LCEL instead. Additionally, I don’t believe these chains have been fully deprecated; even the 0.3 documentation still includes them. You can check it out here: python.langchain.com/docs/tutorials/qa_chat_history/
@Pratik345-b1y
@Pratik345-b1y 7 күн бұрын
Hi @pradip - How can we integrate voice agent functionality in this ? like if customer calls, our ai agent should speak to them as real human
@Pratik345-b1y
@Pratik345-b1y 4 күн бұрын
Can you help pls
@FutureSmartAI
@FutureSmartAI 19 сағат бұрын
For voice call you will need to see provider but if you want that your agent or bot comminutae with audio and understand speech then you can do it check kzbin.info/www/bejne/jWSpkpeeftWGo7csi=-OH0eThgP8gdaUJy
@Rakesh_Seerla
@Rakesh_Seerla Ай бұрын
open ai api key limit exceed when ever i have used that it shows the same 😮‍💨
@kk008
@kk008 Ай бұрын
how to evaluate to built RAG application?
@sanketkurle2251
@sanketkurle2251 Ай бұрын
❤❤
@prashlovessamosa
@prashlovessamosa 2 ай бұрын
Thanks
@SKini18
@SKini18 8 күн бұрын
Can we load xlsx or xls files and chat with the file using this ?
@FutureSmartAI
@FutureSmartAI 6 күн бұрын
If its xlsx you should explore NL2SQL way it will work better that treating it as text and use RAG
@SaiLikhithaP24MCS004
@SaiLikhithaP24MCS004 2 ай бұрын
this is one amazing video sir ! I have a question, weaviate seems to give a tough competition to chromaDB so how to choose between vector DBs
@FutureSmartAI
@FutureSmartAI 2 ай бұрын
Let me see if I could create video on that
@Magmatic91
@Magmatic91 2 ай бұрын
Thank you for this great tuto, I have question though : The app you developed is on localhost, but how we can deploy so that it's available online ?
@FutureSmartAI
@FutureSmartAI Ай бұрын
Its like deploying any api check this kzbin.info/www/bejne/bXe5gaFoatKge7Msi=k9IiN8XS13hn_O48 kzbin.info/www/bejne/b2GXlIpvoa9qgrMsi=aydaAzyj-nyJPDke
@Magmatic91
@Magmatic91 Ай бұрын
@FutureSmartAI thank you
@pravinthombal6742
@pravinthombal6742 3 күн бұрын
If we provide chat history every times, with query then token size will also increase, so is it okay? Please answer
@FutureSmartAI
@FutureSmartAI 19 сағат бұрын
Yes we need to pass chat history since llm dont remember anything but there are ways to limit chat histry check this python.langchain.com/docs/how_to/trim_messages/
@abhishekpawar7170
@abhishekpawar7170 2 ай бұрын
27:36
@chaithanyavamshi2898
@chaithanyavamshi2898 2 ай бұрын
Please teach Huggingaface or ollama open source models instead of Open AI LLMs
@FutureSmartAI
@FutureSmartAI 2 ай бұрын
Planning open source models in next video. I work with multiple clients and they still prefer open ai models rather spending money hosting open source models
@chaithanyavamshi2898
@chaithanyavamshi2898 2 ай бұрын
@@FutureSmartAI Thank you for the reply. Interesting to know and company which I work for want to host open source models due to privacy and security and no need to worry about vendor lock in. Can you please guide or have any plans using litellm to make the code model agnostic?
@lithinullal8756
@lithinullal8756 Ай бұрын
great video! can you share the code used?
@FutureSmartAI
@FutureSmartAI Ай бұрын
In the description
@chimwemwechinamale6716
@chimwemwechinamale6716 2 ай бұрын
Hi Pradip. Is it still worth it to pursue this space/market on upwork? is there still demand for it ?
@FutureSmartAI
@FutureSmartAI 2 ай бұрын
Yes
@abhishekpawar7170
@abhishekpawar7170 2 ай бұрын
1:15:05
@mithunmahato309
@mithunmahato309 2 ай бұрын
Can i use gemini pro instead of open ai ?
@FutureSmartAI
@FutureSmartAI 2 ай бұрын
Yes
@ArpitYadav-ws5xe
@ArpitYadav-ws5xe Ай бұрын
wonderful...you are doing excellent.. can we get this code file?
@FutureSmartAI
@FutureSmartAI Ай бұрын
Yes. code and explanation link in description
@Pratik345-b1y
@Pratik345-b1y 16 күн бұрын
@@FutureSmartAI code isn't complete - can you publish it on git or add google collab link
@FutureSmartAI
@FutureSmartAI 16 күн бұрын
@@Pratik345-b1y All code is availble on hashnode series whose link is in description. Blog will also have link to original notebook
@Pratik345-b1y
@Pratik345-b1y 16 күн бұрын
@@FutureSmartAI Got it - Thank you so much - Your work is really awesome !! Please create more content - its more valuable than any paid courses
@imrozalam9042
@imrozalam9042 15 күн бұрын
@@FutureSmartAI i am not able to find
@RajatKUMARNayak-ce6ki
@RajatKUMARNayak-ce6ki Ай бұрын
you should sahre the github Repo as well
@FutureSmartAI
@FutureSmartAI Ай бұрын
yes check link in description
@awadheshamar6012
@awadheshamar6012 2 ай бұрын
Thanks a lot for such a wonderful content. Could u please list down all step required to get code in local and make it running 1. Clone code using git clone 2. Replace api key 3. Run command for Backend 4 run command for fronted This will help to play around with this code
@awadheshamar6012
@awadheshamar6012 2 ай бұрын
How to run both application
@awadheshamar6012
@awadheshamar6012 2 ай бұрын
I m new to python
@shobhitagnihotri416
@shobhitagnihotri416 2 ай бұрын
I think It would be better to revise
@FutureSmartAI
@FutureSmartAI 2 ай бұрын
Thanks for suggestions
@anonymouscaveman8557
@anonymouscaveman8557 Ай бұрын
lottery lag gai
@nothing-t4c1g
@nothing-t4c1g 2 ай бұрын
Hi @pradip
@bhaveshxrawat
@bhaveshxrawat Ай бұрын
19:47
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 42 МЛН
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
IL'HAN - Qalqam | Official Music Video
03:17
Ilhan Ihsanov
Рет қаралды 700 М.
Multimodal RAG: Chat with PDFs (Images & Tables) [latest version]
1:11:04
Alejandro AO - Software & Ai
Рет қаралды 33 М.
LangChain Explained in 13 Minutes | QuickStart Tutorial for Beginners
12:44
8 Rules For Learning to Code in 2025...and should you?
12:59
Travis Media
Рет қаралды 167 М.
Run ALL Your AI Locally in Minutes (LLMs, RAG, and more)
20:19
Cole Medin
Рет қаралды 337 М.
How to Prompt Cursor, Windsurf & Copilot to Get Reliable Output
17:12
Yifan - Beyond the Hype
Рет қаралды 12 М.
LangChain vs LangGraph: A Tale of Two Frameworks
9:55
IBM Technology
Рет қаралды 62 М.
Python RAG Tutorial (with Local LLMs): AI For Your PDFs
21:33
pixegami
Рет қаралды 344 М.
RAG From Scratch: Conversational RAG Without LangChain or LlamaIndex
37:56
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 42 МЛН