Game Theory 101: The Hawk-Dove Game

  Рет қаралды 77,854

William Spaniel

William Spaniel

Күн бұрын

Пікірлер: 25
@bradsmith6019
@bradsmith6019 5 жыл бұрын
This video makes sense until 6:08, at which point new things are introduced with zero explanation.
@directordissy2858
@directordissy2858 2 жыл бұрын
For future watchers - see his video on the mixed strategy algorithm. He covers this earlier in the series and the math he starts at 6:08 is straightforward by this point in the series.
@ValentineRogue
@ValentineRogue 2 жыл бұрын
​@@directordissy2858 A quick summary of the math: In any two-player-two-option game, to find the nash equilibrium (pure- or mixed- strategy), we set the expected utility of the opponent (EU_2, what player 2 will get out of the game) for each option (EU_2(H) and EU_2(D)) equal to each other and solve for the proportion of options player 1 should select when playing the game multiple times (sigma_1(H) and sigma_1(D), where, since there only only 2 options, sigma_1(H)=1-sigma_1(D)). So from player 2's perspective, then replacing sigma_1(D) with 1-sigma_1(H) EU_2(H)=sigma_1(H)*(V/2-C)+sigma_1(D)*(V)=sigma_1(H)*(V/2-C)+(1-sigma_1(H))*(V) and EU_2(D)=sigma_1(H)*(0)+sigma_1(D)*(V/2)=sigma_1(H)*(0)+(1-sigma_1(H))*(V/2) The objective of player 1 is to make player 2's actions predictable, so they should act in a way such that, from player 2's perspective, EU_2(H)=EU_2(D), so that player 2 have no incentive to pick one over the other. This means that player 1 can reasonably expect that player 2 will have sigma_2(H)=sigma2(D)=0.5, and act accordingly. Because neither sigma_2 is equal to 1, this is a mixed-strategy nash equilibrium. If player 1 instead somehow knows ahead of time what player 2 will choose, sigma_2(H)=1 and sigma_2(D)=0 or vice versa, resulting in the pure-strategy nash equilibrium. So there are three cases for the exogenous variable: V/2-C>0, V/2-C=0, and V/2-C0 and V/2-C=0, player 1 maximizes their expected utility by always playing hawk, because sigma_1(H)*(V/2-C)+(1-sigma_1(H))*(V)=sigma_1(H)*(0)+(1-sigma_1(H))*(V/2) always results in sigma_1(H)=V/2C, and for V/2-C>0 and V/2-C=0, V/2C is greater than or equal to 1. Player 1 can assume player 2 has come to the same conclusion because the game is symmetrical, so sigma_1(H)=sigma_2(H)=1, resulting no mixed-strategy nash equilibria, only the pure-strategy nash-equilibrium of (Hawk, Hawk) In case V/2-C
@anatyy2
@anatyy2 12 жыл бұрын
Thank you you helped me study for my uni exam!
@ehatipo4598
@ehatipo4598 3 жыл бұрын
did you graduate?
@lubababinthhalim3840
@lubababinthhalim3840 Ай бұрын
Can the cost of conflict be divided among the players so that when they both play Hawk strategy, they both get a payoff of (v-c)/2. When you write (v/2)-c that means each incurs a different cost of conflict? Or the cost is not divided but each incurs the cost fully?
@Gametheory101
@Gametheory101 13 жыл бұрын
@Dexmonicus ...which is technically covered by this game, when V = C!
@akawumpus
@akawumpus 8 жыл бұрын
I guess this is also an important game in Evolutionary biology. Don't understand why yet, but thanks for the quick explanation.
@AnthonyLopez-di5vv
@AnthonyLopez-di5vv 2 жыл бұрын
because the payoffs can represent fitness, which can help explain evolvability of a phenotype/strategy in a population. have a look at Maynard Smith's classic "Evolution and the Theory of Games"
@alexanderrahl7034
@alexanderrahl7034 2 жыл бұрын
It's also an example of aggression and agreeableness. Animals in the wild rarely fight to the death, or even to severe injury, because any injury can be life threatening. The hawks in this case, are aggressive, they will beat the dove every time. In this way, the hawk's aggression beats the Dove's so the dove leaves. Hawk gets +1, and both live. In this way, it's preferable to be the hawk, the Predator, over the prey. However, in the event of 2 hawks, the fittest survives. So it's best to be the strongest hawk overall. Extrapolated to humans, we are the apex Predators, and we have our own internal hawk and dove dynamic within our species.
@belleviewable
@belleviewable 12 жыл бұрын
yes I would also like to know the answer please!
@Pallerim
@Pallerim 13 жыл бұрын
Did you say 'peer' or 'pure' strategy @ 4:17 ? Since you've only mentioned 'pure strategy' before i guess that's it, but i'm still in the learning process, so i don't know if there is such a thing as 'peer strategy' :)
@ValentineRogue
@ValentineRogue 2 жыл бұрын
This is 11 years late, but he says pure-strategy nash equilibrium. Pure because the sigma for one of the options for one of the players is 1, whereas in a mixed-strategy bash equilibrium, none of the players have any sigma of 1.
@Gametheory101
@Gametheory101 13 жыл бұрын
@Pallerim Pure.
10 жыл бұрын
You were saying Heads and Tails instead of Hawk/Dove.. haha.. it was on purpose? But thank you!
@kiemdoan
@kiemdoan 12 жыл бұрын
What about V/2-C is 0? Would there not be weak dominance?
@cremeog7362
@cremeog7362 7 жыл бұрын
5 years late but I'm pretty sure that the population doves would go to zero over how ever many iterations dependent on the base fitness.
@ApplepieFTW
@ApplepieFTW 6 жыл бұрын
probs for coming back to this comment FIVE YEARS LATER DAMN
@ValentineRogue
@ValentineRogue 2 жыл бұрын
The V/2-C=0 case is similar to the V/2-C>0 case, because EU_2(H)=EU_2(D) always results in sigma_1(H)=V/2C, which indicates there are no mixed-strategy nash equilibria. The pure-strategy nash equilibria are determined by setting each sigma_2=1. For V/2-C>0 and sigma_2(H)=1 -> sigma_2(D)=0, EU_1(H)=V/2-C>0 and EU_1(D)=0, so sigma_1(H)=1 and sigma_1(D)=0, and sigma_2(D)=1 -> sigma_2(H)=0, EU_1(H)=V>0 and EU_1(D)=V/2>0, so sigma_1(H)=1 and sigma_1(D)=0. Then the only pure-strategy nash equilibrium for V/2-C>0 is (Hawk, Hawk), because if player 1 should always pick Hawk, so Player 2 should also always pick Hawk to maximize their EU. For V/2-C=0 and sigma_2(H)=1 -> sigma_2(D)=0, EU_1(H)=V/2-C=0 and EU_1(D)=0, but then EU_1(H)=EU_1(D)=0, and sigma_2(D)=1 -> sigma_2(H)=0, EU_1(H)=V>0 and EU_1(D)=V/2>0, so sigma_1(H)=1 and sigma_1(D)=0. Since the game is symmetrical, player 1 and player 2 come to the same conclusion that if the other player plays only Hawk they get nothing, but if the other player plays Dove they should play Hawk. This means the nash equilibrium is based on whether each player has faith the other player won't screw. We have to assume bad faith, so the nash equilibrium is still (Hawk, Hawk). In some strange universe where we assume good faith, the pure-strategy nash-equilibrium becomes (Dove, Dove), but either player betraying that good faith even once to play Hawk and get the EU of V instead of V/2 produces bad faith, resulting in the bad faith nash equilibrium of (Hawk, Hawk). Ultimately the EU of both players is 0, so the game has no utility, so the real solution is to not play (or to just play for fun).
@hadikhaled1410
@hadikhaled1410 7 жыл бұрын
Hello , i have a question regarding this topic , i am willing to have a mathematical analysis including this topic . i am an Ib student doing his math Standard level exploration , and i found this interesting. But i need help to know if the aim of my topic is suitable and i would like to inquire about some calculations including this. Firstly, do you think that exploring which strategies are more successful to win a hawk and dove, in addition can we determine whether there is an equillibrium or not . Lastly what kind of mathematical tests can i use on game theory. Thank you
@AkifIsmail-r2i
@AkifIsmail-r2i Ай бұрын
The Hawk Tuah game
@dompatrick8114
@dompatrick8114 3 жыл бұрын
thanks G
@stillamitchinmybook6320
@stillamitchinmybook6320 4 ай бұрын
Huh? Lol no but really this is cool
@AkifIsmail-r2i
@AkifIsmail-r2i Ай бұрын
The Hawk Tuah Game
@LissusMurataj
@LissusMurataj Ай бұрын
was looking for this comment
Game Theory 101: Comparative Statics
6:09
William Spaniel
Рет қаралды 3,8 М.
Game of Chicken / Hawk-Dove in Game Theory
6:47
Ashley Hodgson
Рет қаралды 17 М.
Маусымашар-2023 / Гала-концерт / АТУ қоштасу
1:27:35
Jaidarman OFFICIAL / JCI
Рет қаралды 390 М.
Simulating the Evolution of Aggression
13:17
Primer
Рет қаралды 23 МЛН
How Decision Making is Actually Science: Game Theory Explained
9:50
How to Remember Everything You Read
26:12
Justin Sung
Рет қаралды 3,1 МЛН
The Hidden Strategic Dilemmas of the TikTok Ban
10:01
William Spaniel
Рет қаралды 45 М.
What game theory teaches us about war | Simon Sinek
9:49
TED Archive
Рет қаралды 4 МЛН
Evolutionary Game Theory
14:39
Systems Innovation
Рет қаралды 42 М.
Prisoner’s Dilemma in Game Theory
7:49
Ashley Hodgson
Рет қаралды 40 М.
Evolutionary Games
1:20:41
MIT OpenCourseWare
Рет қаралды 17 М.
Mixed Strategy Nash Equilibrium
11:44
Katherine Silz-Carson
Рет қаралды 43 М.