Game Theory 101 (#7): Mixed Strategy Nash Equilibrium and Matching Pennies

  Рет қаралды 393,705

William Spaniel

William Spaniel

Күн бұрын

Пікірлер: 73
@kaanbursa7626
@kaanbursa7626 9 жыл бұрын
I got 9/100 from the exam thanks
@Gametheory101
@Gametheory101 9 жыл бұрын
Kaan Bursa I sincerely hope that was 90 or 99 out of 100 and not 9!
@BlademanZX
@BlademanZX 8 жыл бұрын
+William Spaniel or 9/10 :P Though I suppose that's the same as 90/100.
@batman9937
@batman9937 6 жыл бұрын
why did you pin it lol
@Blizzardsnewman
@Blizzardsnewman 4 жыл бұрын
@@batman9937 he's into memes
@ryunderstands8602
@ryunderstands8602 4 жыл бұрын
@@batman9937 trust bro homie is nerfing his own channel
@alexanderharding2221
@alexanderharding2221 2 жыл бұрын
I'm going to fail a Game Theory exam tomorrow. Thanks to your videos, I'm going to fail marginally less embarrassingly. Thank you.
@alexanderharding2221
@alexanderharding2221 2 жыл бұрын
UPDATE: I ACTUALLY PASSED.
@graceh.9015
@graceh.9015 2 жыл бұрын
@@alexanderharding2221 good work !
@alexanderharding2221
@alexanderharding2221 2 жыл бұрын
@@graceh.9015 late thank you 🙏
@shafiakhtar4360
@shafiakhtar4360 2 жыл бұрын
I am not not going to fail so watching this video before 2 months from exam.😂.
@Kalernor
@Kalernor Жыл бұрын
@@alexanderharding2221 LET'S GOOOO. (Belated) Congrats!
@Gametheory101
@Gametheory101 11 жыл бұрын
You can calculate best responses like that, but keep in mind that we mostly care about equilibrium. So you really need correspondences to get that to work.
@abdoulayesaadou4448
@abdoulayesaadou4448 6 жыл бұрын
Thanks a lot. I understood how to compute the probabilities in the case of two players. What if we had 4 players instead? Suppose player 1 & 2 maintain their strategies while players 3 & 4 adopt player 2's strategies.
@thomasmatthews80
@thomasmatthews80 6 ай бұрын
Loving these in 2024. Book great too. 🎉
@Rachel-jx1xs
@Rachel-jx1xs 9 жыл бұрын
Hi William, I didn't quite get this video so hope you don't mind clarifying:) For a mixed strategy Nash Equilibria to happen: -The outcome must be zero-sum -There is no best dominated strategy -There is no pure strategy Nash strategy Equilibria And the way it works is: -Players simply randomly choose(?) Is my understanding correct?
@Gametheory101
@Gametheory101 9 жыл бұрын
+alittlepenny saidhi I have some caveats. There are MSNE in non-zero sum games. There are MSNE when there are also PSNE. And you can have MSNE when a player has a single dominant strategy. You'll see examples of all of these later in the course.
@soapbxprod
@soapbxprod 8 жыл бұрын
That's the absurd point of Nash's mixed strategy. There is actually no strategy at all.
@Mashayach7
@Mashayach7 Жыл бұрын
Woooow, I was wondering what the poison game in The Princess Bride would look like in terms of game theory and came across a Cornell University blog that explained it like this. Now I actually have a better grasp of what they were getting at.
@zumiao234
@zumiao234 4 жыл бұрын
Thank you!Got to attend an exam the day after tomorrow and you saved me!
@giorgiocilano4483
@giorgiocilano4483 4 жыл бұрын
Hi William, is it possible to have the text of what you explain? because I don’t speak English very well and I would like to fully understand these topics on game theory by watching your videos. Thank you very much
@Gametheory101
@Gametheory101 4 жыл бұрын
The textbook is basically a written version of these lectures with a lot more examples.
@mage1over137
@mage1over137 11 жыл бұрын
actually now that think about it the input vector would could be any unit vector, and you could vary it until you find the maxs. So just ignore my last sentence.
@RyanSlama
@RyanSlama 11 жыл бұрын
I would just think insane things until the mind reader left my thoughts to myself.
@dgk2789
@dgk2789 2 жыл бұрын
Pause: suppose you were against minder reader, yes.. I will just flip the coin !
@mage1over137
@mage1over137 11 жыл бұрын
if your strategy is represented by a vector which each element is the weight of that strategy. Multiply by the payoff matrix than dot with the other strategy vector, this would be a map from a vector space to the reals. You can than find local maximum. Also this would be on a grid not plane, though generalization might be possible.
@Gametheory101
@Gametheory101 11 жыл бұрын
Can you describe that in a more detailed way?
@sebastianhjarndal9110
@sebastianhjarndal9110 7 ай бұрын
i get what a Pure strategy Nash-e......., is but when you just say pure strategy what do u mean?
@joypalit6408
@joypalit6408 3 жыл бұрын
Hi sir! U have mentioned that if we flip the coin then we will get Nash equilibrium. So, in penalty kicks what is the analogue of "flipping the coin"?
@Gametheory101
@Gametheory101 3 жыл бұрын
Here's an example: kzbin.info/www/bejne/jXOmiKqKfLKBmsU
@joypalit6408
@joypalit6408 3 жыл бұрын
@@Gametheory101 thanks
@ARP2wefightforyou
@ARP2wefightforyou 8 жыл бұрын
But there was no Nash equilibrium in the original game, i.e. the one without mind readers.
@kkTeaz
@kkTeaz 4 жыл бұрын
Both flip
@spike9985
@spike9985 6 жыл бұрын
Im convinced you're Ben from Parks and Rec.
@Gametheory101
@Gametheory101 6 жыл бұрын
Funny you should mention that, my next video is about optimal strategies in the Cones of Dunshire.
@ngahngako8739
@ngahngako8739 6 жыл бұрын
Pleas will like to nkow if the always exist a nash equilinrium in a mixed strategies
@williameuerle3460
@williameuerle3460 4 жыл бұрын
diametrically opposed.......foes
@mage1over137
@mage1over137 11 жыл бұрын
Can we think of mix stagey as a vector, and the payoff matrix as a two form. Then optimize using finding basically the local maximum?
@harveyspecter3361
@harveyspecter3361 6 жыл бұрын
Yes you can!
@thomasmatthews80
@thomasmatthews80 6 ай бұрын
This is where the application to poker GTO comes in …
@sami-samim
@sami-samim 9 жыл бұрын
Can we apply mixed strategies to pure nash equilibrium? (For a game where it has a pure nash equilibrium).
@Gametheory101
@Gametheory101 9 жыл бұрын
+Sami Samim Yes. Keep watching. There are some examples upcoming.
@sami-samim
@sami-samim 9 жыл бұрын
Many thanks.
@harveyspecter3361
@harveyspecter3361 6 жыл бұрын
Pure strategies are basically mixed strategies where one player has probability of 1 in one (pure) row or column.
@divyanshupathak2327
@divyanshupathak2327 7 жыл бұрын
hey William I am studying game theory from Martin j Osborne book I find problems in that book difficult . can you help me ?.
@ronitlenka9205
@ronitlenka9205 4 жыл бұрын
Read Gibbons.
@area___
@area___ 4 жыл бұрын
how does either "know" what the other player will choose?
@ViciousRanger
@ViciousRanger 11 жыл бұрын
At 4:30, why do you say "At best", wouldn't it be "On average"?
@dannymunoz8027
@dannymunoz8027 10 жыл бұрын
Good work
@normanhofer8965
@normanhofer8965 9 жыл бұрын
really really good! 'n nice speed!
@bivasbisht1244
@bivasbisht1244 4 жыл бұрын
explanation is awesome , but dude you speak really fast
@Verbti
@Verbti 10 жыл бұрын
So how can I use what I learn here to say every day decision making. I'm having a hard time devising these boxes.Solving them though seems doable.
@Finition1999
@Finition1999 5 жыл бұрын
thanksss
@jamessheng1107
@jamessheng1107 7 жыл бұрын
Well, what i am thinking is that if you are facing a mind reader who knows what exact you are thinking, and you know that he is a mind reader who knows what you are thinking. Then you can directly response to his behaviour since you can predict his behaviour based on the assumption that he knows your behaviour. Take an example, assume you will pick head, he knows you will pick head so he will pick tail. Since you know he can read your mind so that you know he will pick tail. Then you will also pick tail to response. Take action before the mind reader read your mind again so that he realise you will pick a tail since you know that he will pick a tail response for your first mind, you can win the game.....
@David-lr4mh
@David-lr4mh 7 жыл бұрын
That's called levels of reasoning
@SwissSareth
@SwissSareth 6 жыл бұрын
This assumes that the mind reader isn't constantly reading your thoughts.
@ivoriankoua3916
@ivoriankoua3916 4 жыл бұрын
But......he already knows that....so you're better flipping.
@soapbxprod
@soapbxprod 8 жыл бұрын
This argument is logically absurd. A mind reader would know that you were going to flip the coin, yes?
@Silamoth
@Silamoth 8 жыл бұрын
Yes, but what good would knowing that do the mind reader? The mind reader still wouldn't know what it would land on.
@soapbxprod
@soapbxprod 8 жыл бұрын
That's the absurd point of Nash's mixed strategy. There is actually no strategy at all.
@JJ-fb2lp
@JJ-fb2lp 8 жыл бұрын
mind reader cannot know which side of the coin it would land on that is why we need mixed strategy....
@harveyspecter3361
@harveyspecter3361 6 жыл бұрын
Uhm, the mind reader cannot control the outcome of the coin ending up being heads or tails. In this case, it is useless to know what the other player will play.
Game Theory 101 (#8): The Mixed Strategy Algorithm
9:34
William Spaniel
Рет қаралды 311 М.
Game Theory 101 (#4): Pure Strategy Nash Equilibrium and the Stag Hunt
8:22
amazing#devil #lilith #funny #shorts
00:15
Devil Lilith
Рет қаралды 18 МЛН
When mom gets home, but you're in rollerblades.
00:40
Daniel LaBelle
Рет қаралды 129 МЛН
СОБАКА ВЕРНУЛА ТАБАЛАПКИ😱#shorts
00:25
INNA SERG
Рет қаралды 1,8 МЛН
Prisoners' dilemma and Nash equilibrium | Microeconomics | Khan Academy
9:21
Game Theory 101 (#6): Best Responses
8:24
William Spaniel
Рет қаралды 233 М.
Game Theory 101 (#58): Grim Trigger in the Repeated Prisoner's Dilemma
18:00
Mixed Strategy Nash Equilibrium
11:44
Katherine Silz-Carson
Рет қаралды 41 М.
Bayes theorem, the geometry of changing beliefs
15:11
3Blue1Brown
Рет қаралды 4,5 МЛН
6 Verbal Tricks To Make An Aggressive Person Sorry
11:45
Charisma on Command
Рет қаралды 23 МЛН
Game Theory 101 (#2): The Prisoner's Dilemma and Strict Dominance
5:56
William Spaniel
Рет қаралды 323 М.
How Russia's Troubles in Kursk Brought North Korea into the War
21:43
William Spaniel
Рет қаралды 309 М.
amazing#devil #lilith #funny #shorts
00:15
Devil Lilith
Рет қаралды 18 МЛН