gamma reflection via double and contour integration.

  Рет қаралды 14,110

Michael Penn

Michael Penn

Күн бұрын

🌟Support the channel🌟
Patreon: / michaelpennmath
Channel Membership: / @michaelpennmath
Merch: teespring.com/...
My amazon shop: www.amazon.com...
🟢 Discord: / discord
🌟my other channels🌟
mathmajor: / @mathmajor
pennpav podcast: / @thepennpavpodcast7878
🌟My Links🌟
Personal Website: www.michael-pen...
Instagram: / melp2718
Twitter: / michaelpennmath
Randolph College Math: www.randolphcol...
Research Gate profile: www.researchga...
Google Scholar profile: scholar.google...
🌟How I make Thumbnails🌟
Canva: partner.canva....
Color Pallet: coolors.co/?re...
🌟Suggest a problem🌟
forms.gle/ea7P...

Пікірлер: 57
@f5673-t1h
@f5673-t1h Жыл бұрын
If the gamma function didn't have that pesky -1, the reflection formula would look like this: Γ(z)Γ(-z) = πz/sin(πz) You can easily see there is a reflection with the minus sign, and also the RHS looks like the reciprocal of sin(x)/x, an important function used in calculus to find trig derivatives.
@fartoxedm5638
@fartoxedm5638 Жыл бұрын
Actually, It would be -pi / (z * sin(pi * z)). The thing you are reffering to is Г(z + 1) * Г(1 - z)
@f5673-t1h
@f5673-t1h Жыл бұрын
@@fartoxedm5638 Γ(z) = (z-1)! with the usual definition (for positive integers, but let's extend it) The reflection formula is Γ(z)Γ(1-z) = π/sin(πz) Replace gammas with factorial: (z-1)!(-z)! = π/sin(πz) Multiply with z: (z)!(-z)! = πz/sin(πz) Change notation to make gamma match with factorial: Γ(z)Γ(-z) = πz/sin(πz)
@fartoxedm5638
@fartoxedm5638 Жыл бұрын
@@f5673-t1h You have literally wrote the mapping from factorial world to the gamma world in your first line. You can't simply go with "Nah, let's take Г(x) = x!" In the end
@f5673-t1h
@f5673-t1h Жыл бұрын
@@fartoxedm5638 that's the point I'm trying to make when I said "if gamma didn't the -1" Please read
@fartoxedm5638
@fartoxedm5638 Жыл бұрын
@@f5673-t1h ah, got it. Sorry for misunderstanding
@TomFarrell-p9z
@TomFarrell-p9z Жыл бұрын
This is great! I took a complex analysis class 41 years ago, but I was always weak on contour integration and applying the concept to real integrals (I was weak, or the course was weak). Inspired me to look at your complex analysis videos on MathMajor, and I'll probably go through those. Thank you for doing all of this! BTW, if you make or already have a video series on multi-variable calculus, I'll be reviewing that as well!
@bjornfeuerbacher5514
@bjornfeuerbacher5514 Жыл бұрын
12:00 We have to restrict the value of z much earlier: The integral definitions of the Gamma function which Michael uses right from the start are only valid for Re(z) > 0 and Re(z) < 1, respectively. 15:00 Here it's not regardless of what z is, this only works for Re(z) > -1.
@brendanmiralles3415
@brendanmiralles3415 Жыл бұрын
I'm fairly certain the integral is well defined for all Re(z) > 0 why wouldn't it be for re(z)>1?
@brendanmiralles3415
@brendanmiralles3415 Жыл бұрын
nvm I get what you're saying because of the z and the 1-z ignore me I'm an idiot 😂
@bjornfeuerbacher5514
@bjornfeuerbacher5514 Жыл бұрын
@@brendanmiralles3415 No problem. I think it was my fault, I didn't explain very well what I meant.
@Xeroxias
@Xeroxias Жыл бұрын
It seems like we're doing something shady with the contour integral. In particular, the replacement u -> exp(i2pi) u is baffling, since there should be no change. I figure Michael is leaving out some t -> 0+ from some of these definitions and for C3 the replacement is actually u -> exp(i2pi - i2t) or something of that nature.
@fireballman31
@fireballman31 Ай бұрын
This went over so much for one problem and it led to a nice formula, amazing video
@DeanCalhoun
@DeanCalhoun Жыл бұрын
Complex analysis is by far my favorite field of mathematics. So elegant and powerful!
@Mystery_Biscuits
@Mystery_Biscuits Жыл бұрын
I think, with a couple of appropriate hints, this derivation would make a very nice final exam question for a complex analysis class
@The1RandomFool
@The1RandomFool Жыл бұрын
I used contour integration to derive this identity as well, but started with this representation of the beta function, the integral of t^(a-1)/(1+t)^(a+b) from 0 to infinity for t.
@spiderjerusalem4009
@spiderjerusalem4009 Жыл бұрын
book recommendation for complex analysis?
@pacolibre5411
@pacolibre5411 Жыл бұрын
I would be very interested in a discussion of convergence on this integral. Normally, it’s not something I care about, but because the integral defining the gamma function is only defined for z>0, meaning this integral should diverge for z outside (0,1), meaning you actually sneakily did some analytic continuation here.
@jkid1134
@jkid1134 Жыл бұрын
This is an excellent video, a ton of dirty details without getting bogged down in the algebra.
@goodplacetostop2973
@goodplacetostop2973 Жыл бұрын
20:02
@aweebthatlovesmath4220
@aweebthatlovesmath4220 Жыл бұрын
Eulers reflection formula is one of my favourite identities in math! Thank you for the video.
@PopPhyzzle
@PopPhyzzle Жыл бұрын
That was gorgeous. props
@MichaelMaths_
@MichaelMaths_ Жыл бұрын
Very interesting, I often see this done using Euler or Weierstrass product
@allanjmcpherson
@allanjmcpherson Жыл бұрын
This really makes me want to learn complex analysis! I just need to find the energy and make the time.
@Noam_.Menashe
@Noam_.Menashe Жыл бұрын
I can already guess that the integral is 1/(1+x^n) or its counterparts. Edit: after integration by parts it's a simple substitution for my integral.
@Happy_Abe
@Happy_Abe Жыл бұрын
@16:23 how is this not dividing by 0? e^(2pi*iz)=1^z=1 so 1-e^(2pi*iz)=0 and we are dividing by 0
@gniedu
@gniedu Жыл бұрын
This proof assumes Re(z+1)
@oliverherskovits7927
@oliverherskovits7927 Жыл бұрын
We have that f(z) := Γ(z)Γ(1-z)sin(πz) satisfies f(z) = π on Re(z+1)
@davidblauyoutube
@davidblauyoutube Жыл бұрын
The restriction is necessary to evaluate the product Γ(z)Γ(1-z), because the integral representations of both Γ(z) and Γ(1-z) need to simultaneously converge and this only happens in the "critical strip" 0 < Re(z) < 1. Once this expression is evaluated, it turns out to simplify to π/sin(πz), giving us a valid /equation/ that holds in the critical strip. But once the equation is proved, it may be re-interpreted as a /formula/ for computing values of Γ in places where the integral representation does not converge (i.e. thereby "getting rid of the restriction"). In fact, treating the equation as a formula is the /unique/ way to extend Γ to the rest of the complex plane while maintaining its nature as an analytic function.
@gniedu
@gniedu Жыл бұрын
Thanks!
@khoozu7802
@khoozu7802 Жыл бұрын
14.32 He forgot to put "i" in front of the integral but that is not a problem because the integral goes to zero
@imTyp0_
@imTyp0_ 7 ай бұрын
Been wanting to see this for a while! Got stuck midway and didn’t know how to proceed
@odysseus9672
@odysseus9672 Жыл бұрын
How do you show that this formula is valid for Re(1+z) > 2?
@gp-ht7ug
@gp-ht7ug Жыл бұрын
Excellent video
@edcoad4930
@edcoad4930 Жыл бұрын
Glorious!
@arandomcube3540
@arandomcube3540 Жыл бұрын
Interesting, because this approaches 1/z as pi approaches 0.
@vadimpavlov6037
@vadimpavlov6037 Жыл бұрын
Had a heart stroke at 6:56
@nightmareintegral5593
@nightmareintegral5593 Жыл бұрын
What about Jackson integral?
@vascomanteigas9433
@vascomanteigas9433 Жыл бұрын
I make a Proof of this identity using contour integral on my notes. Later I made a Proof of the Riemann and Hurwitz Zeta Functional equation using complex contour integral (which have an infinite number of poles...)
@realaugustinlouiscauchy
@realaugustinlouiscauchy 5 ай бұрын
isn't the branch cut supposed to be in the negative real axis?
@Mr_Mundee
@Mr_Mundee 11 ай бұрын
you don't need to use a contour integral, just use the beta function
@GreenMeansGOF
@GreenMeansGOF Жыл бұрын
We had to assume that the real part of z is less than 1?
@minwithoutintroduction
@minwithoutintroduction Жыл бұрын
رائع جدا كالعادة
@inigovera-fajardousategui3246
@inigovera-fajardousategui3246 Жыл бұрын
Nice one
@Juratbek0717
@Juratbek0717 Жыл бұрын
hi teacher how can i contact you
@Khashayarissi-ob4yj
@Khashayarissi-ob4yj Жыл бұрын
Hi. Please make videos on another math's ares's like abstract algebra, differencial geometry, algebric geometry and etc.... With regards
@Alan-zf2tt
@Alan-zf2tt Жыл бұрын
As for moi - whenever the presentation goes off at an extreme tangent covering some gross new things they seem to be eminently forgettable. But I reserve the right to be wrong on this :-) Basis of my conjecture: math is not frightening, math is eminently doable. Nonetheless - great video, great swooping intro to some gigantic new things (I feel like calling them monsters and that is okay)
@billycheung5114
@billycheung5114 Жыл бұрын
This crazy
@ecoidea100
@ecoidea100 Жыл бұрын
Elegant
@looney1023
@looney1023 Жыл бұрын
But we've only proven this for the case of Re(z+1) < 2?
@oliverherskovits7927
@oliverherskovits7927 Жыл бұрын
Use the identity principle from complex analysis to extend the Identity to all of C (minus multiples of π)
@bjornfeuerbacher5514
@bjornfeuerbacher5514 Жыл бұрын
And Re(z+1) > 0, otherwise the integral with the epsilon wouldn't vanish.
@juandiegoparales9379
@juandiegoparales9379 11 ай бұрын
I'm glad it wasn't my method 😅.
@charleyhoward4594
@charleyhoward4594 Жыл бұрын
????????????
Retro MS-DOS Coding - Recreating the Iconic Award BIOS Screen
18:16
NCOT Technology
Рет қаралды 80 М.
e^(x/y)=e^x/e^y
21:00
Flammable Maths
Рет қаралды 58 М.
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
do you know about the "reciprocal gamma function"??
17:44
Michael Penn
Рет қаралды 17 М.
A Wallis-type product for e.
27:42
Michael Penn
Рет қаралды 17 М.
An interesting infinite sum
13:24
Michael Penn
Рет қаралды 49 М.
The BEST Mechanical Display You've EVER Seen!!!
13:51
Tin Foil Hat
Рет қаралды 413 М.
a notorious functional equation.
19:30
Michael Penn
Рет қаралды 29 М.
Solving an integral equation using special functions.
16:06
Michael Penn
Рет қаралды 20 М.
The craziest definition of the derivative you have ever seen!
20:42
Zeta function in terms of Gamma function and Bose integral
11:33
blackpenredpen
Рет қаралды 130 М.