Gaussian Quadrature 2: How to Determine the Weights

  Рет қаралды 48,766

MathTheBeautiful

MathTheBeautiful

Күн бұрын

Пікірлер: 46
@MathTheBeautiful
@MathTheBeautiful 4 жыл бұрын
Go to LEM.MA/LA for videos, exercises, and to ask us questions directly.
@HarpreetSingh-ke2zk
@HarpreetSingh-ke2zk 2 жыл бұрын
This is pretty much exactly what I look for in presenters. The simple explanation of the terms/variables/parameters used in the formula comes first, followed by the simple and basic math. Thanks Professor.
@econguy1437
@econguy1437 4 жыл бұрын
As a postgrad, I've been using gaussian quadrature quite a lot in stochastic dynamic programming in economics, and it has never been clear to me how everything is tied together (since Python takes care of the difficult parts). Glad to have found this series of lectures. It really helps me understand how the engine works. Thank you for all the wonderful uploads!
@MathTheBeautiful
@MathTheBeautiful 4 жыл бұрын
Hi, thanks for letting me know! -Pavel
@TheCsePower
@TheCsePower 3 жыл бұрын
This is much easier to understand than these crazy maths textbooks where everything is either trivial or left as an exercise for the reader.
@luck4393
@luck4393 6 ай бұрын
this!
@Qbabxtra
@Qbabxtra 5 жыл бұрын
Its a joy watching you teach Math!
@balajisriram6363
@balajisriram6363 2 жыл бұрын
Sir, I am using gauss quadrature for FEM. Your explanation was great. Now I understand how to choose the weights for a polynomial of degree "n"
@sosoyo180
@sosoyo180 5 жыл бұрын
Wow who knew David Wallace would be such a good teacher?
@MathTheBeautiful
@MathTheBeautiful 5 жыл бұрын
Yesh
@MeteOguc
@MeteOguc 4 жыл бұрын
But I think the voice actor is Matt Damon. Production cost must have been really high but as a result the lecture is high quality in the end too. So thanks 😄
@gerardoperez4067
@gerardoperez4067 5 жыл бұрын
absolutely beautiful. Thank you very much!
@shifagoyal8221
@shifagoyal8221 3 жыл бұрын
What do we mean by 4 degrees of freedom?
@김승환-g3c
@김승환-g3c 4 жыл бұрын
Oh my god, i finally understand basis of function space from your vedio. Thank you very much!! Much than the below comment
@daviddavini847
@daviddavini847 4 жыл бұрын
Your videos are so helpful and inspiring!
@NicolasSchmidMusic
@NicolasSchmidMusic 3 жыл бұрын
"linearity [...] it means something so simple that talking about it makes it more complicated"
@christossofianos8540
@christossofianos8540 7 жыл бұрын
Professor if i may ask another question! You say that the problem with this method is that the weights are all over the place. And i understand the magic with Gauss quadrature! But why is this a problem? Even if weights are all over the place arent they the exact solution to the integral?
@MathTheBeautiful
@MathTheBeautiful 7 жыл бұрын
Yes, but in numerical calculations, it becomes a problem. Subtracting two large similar numbers is inaccurate. For example, try this (in most numerical environments): (10^17 + 1) - 10^17. E.g.: www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=(10^17+%2B+1)+-+10^17
@christossofianos8540
@christossofianos8540 7 жыл бұрын
Ok i understand now. Thank you professor! Greetings from Greece!
@debendragurung3033
@debendragurung3033 7 жыл бұрын
At 10:00 Isnt Gauss-Legendre quadrature approximated at N points, get exact integration for upto 2N-1 degree polynomials...
@jiashuotong6922
@jiashuotong6922 6 жыл бұрын
You are right. I think there should be more x^n rows, up to n=7.
@ronaldssebadduka6837
@ronaldssebadduka6837 5 жыл бұрын
where do u get the values 2, 0, 2/3, and 0? Also, why did u use 1111 in the first matrix
@ZMKmagic
@ZMKmagic 5 жыл бұрын
you get them when you integrate the functions from -1 to 1 ... for example if you integrate f(x)=1 from -1 to 1 you get =2..if you do the same with f(x)=x you get 0, f(x)=x^2 you get 2/3 and so on. Also, the 1111 is from when f(x)=1, so when you evaluate f(x1) or f(x2) or f(x3) or f(x4) you always get 1. Hope this helped
@vasantk6663
@vasantk6663 4 жыл бұрын
Is there a reason you cannot use an arbitrary power (like you mentioned x^7) when filling the matrix? Also, what makes the approximation only as good as the cubic power if you were to have the last polynomial be a power of 7 instead of cubic?
@ohboyd
@ohboyd 2 жыл бұрын
You can use an arbitrary power such as x^7 but this now means that the family of functions for which the method is exact is f(x) = ax^7 + bx^2 + cx + d. Using powers of x other than 0, 1, 2 or 7 would result in poor approximations, or results which are no longer exact.
@raquelpicado7878
@raquelpicado7878 7 жыл бұрын
How can we predict the error when using Gaussian Quadrature?
@MathTheBeautiful
@MathTheBeautiful 7 жыл бұрын
Estimate the difference between the integrand and the (2n-1)-degree interpolating polynomial.
@raquelpicado7878
@raquelpicado7878 7 жыл бұрын
thank you for your help
@subramaniannk3650
@subramaniannk3650 7 жыл бұрын
Prof, I have a doubt and I wish you helped. I am trying to understand the link between orthogonality and linearly independent. Is it valid to show Wronskian of Legendre polynomials is non-zero instead of proving orthogonality between Legendre polynomials using inner product? Or, are orthogonality and linear independence two very different things?
@JJC007
@JJC007 6 жыл бұрын
think of 2 vectors, if they form an angle which is not 0 or 180 deg, then they are linearly independent. Orthogonality dictates that the angle they form cannot be arbitrary, it has to be 90 deg exactly.
@Fsogge
@Fsogge 5 жыл бұрын
Great video! Thank you so much.
@christossofianos8540
@christossofianos8540 7 жыл бұрын
Professor, thank you for your videos they are very well presented and informative. I have a question, is it possible to calculate the error when computing the integral in some other points other than gauss points for an arbitrary polynomial function? For example we know that for a third degree polynomial when using 2 gauss points the evaluation of the integral is going to be exact. But if these 2 points are not in the optimal positions of Gauss, but in arbitrary positions is there a way to calculate the error? I understand that if the polynomial is given then we can of course compute the error by evaluating the polynomial. But if the polynomial is arbitrary and we only know its degree, would it be possible to calculate the error? Thank you in advance!
@MathTheBeautiful
@MathTheBeautiful 7 жыл бұрын
Yes, the theory of upper bounds on errors is very well developed. You should be able to find it in most books on numerical integration!
@zahirjan9935
@zahirjan9935 4 жыл бұрын
Thanks from your great service
@MathTheBeautiful
@MathTheBeautiful 4 жыл бұрын
Thanks, that means a lot!
@snnwstt
@snnwstt Жыл бұрын
8:34 I feel that we have 8 degree of freedom, four weights and ... four x[sub]i[/sub].
@snnwstt
@snnwstt Жыл бұрын
Oh, 11:50 answers exactly to that question.
@patipateeke
@patipateeke 4 жыл бұрын
5:50: okay, but why are the weights wi the same when you integrate f(x)=1 and f(x)=x, and f(x)=x^2?
@rookiecookie8258
@rookiecookie8258 3 жыл бұрын
Because every polynomial can be written as linear combination of 1,x,x^2,x^3 and so on. If each of these terms integrates exactly then f that is a polynomial integrates exactly
@丁涵-k3q
@丁涵-k3q 3 жыл бұрын
super fabulous!
@atiqueahmed8201
@atiqueahmed8201 7 ай бұрын
Simply amazing ❤❤
@MathTheBeautiful
@MathTheBeautiful 7 ай бұрын
So glad you liked it!
@ghandricheahcene9645
@ghandricheahcene9645 4 жыл бұрын
How we can scale the weights to an interval [a,b] ?
@Merthalophor
@Merthalophor 4 жыл бұрын
You use a so called pullback function: If your polynomial p is defined on [a, b], then define a linear function g [-1, 1] -> [a, b] and pop that into your polynomial, so you get p' = p(g(x)), which is now defined on [-1, 1] (it's "squeezed" together from [a, b] to [-1, 1]). Since g is linear, p' has the same degree as p, and thus you can apply your quadrature formula on p' to optain an approximation of p on [a, b]. p doesn't even have to be a polynomial, but that's a bit harder to show .
@AnkitKumar-ev9nf
@AnkitKumar-ev9nf 5 жыл бұрын
can someone help me with this like why he wrote 1 1 1 1in the first row?
@MathTheBeautiful
@MathTheBeautiful 5 жыл бұрын
Hi Ankit, it is explained in the following video: kzbin.info/www/bejne/eGPaoo2Bj9tmhZI
Gaussian Quadrature 3: The Explanation of the Technique
12:38
MathTheBeautiful
Рет қаралды 34 М.
The Gaussian Integral
10:09
RandomMathsInc
Рет қаралды 669 М.
Thank you Santa
00:13
Nadir Show
Рет қаралды 39 МЛН
Молодой боец приземлил легенду!
01:02
МИНУС БАЛЛ
Рет қаралды 2,2 МЛН
Gaussian Quadrature 1: Summary of Legendre Polynomials
9:19
MathTheBeautiful
Рет қаралды 45 М.
The Least Squares Formula: A Derivation
10:31
MathTheBeautiful
Рет қаралды 127 М.
sqrt(i)
9:02
blackpenredpen
Рет қаралды 4,7 МЛН
NM7 5 Gauss Quadrature
16:55
Eric Davishahl
Рет қаралды 72 М.
Gauss Quadrature
14:39
NPTEL-NOC IITM
Рет қаралды 7 М.
What Are Orthogonal Polynomials? Inner Products on the Space of Functions
10:52
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 755 М.
Gaussian Quadrature | Lecture 40 | Numerical Methods for Engineers
8:51