Preview: The Magic of Gaussian Quadrature - A Billion Times Better than the Next Best Thing

  Рет қаралды 97,412

MathTheBeautiful

MathTheBeautiful

Күн бұрын

Пікірлер: 67
@MathTheBeautiful
@MathTheBeautiful 4 жыл бұрын
Go to LEM.MA/LA for videos, exercises, and to ask us questions directly.
@bjthinks
@bjthinks 9 жыл бұрын
This is a great example, but it doesn't tell me anything about how Gaussian Quadrature works under the hood, or where the sampling points or weights come from.
@MathTheBeautiful
@MathTheBeautiful 9 жыл бұрын
+Brian Johnson That's right. It requires a fair deal of linear algebra to explain the technique.
@keepsmiling1304
@keepsmiling1304 8 жыл бұрын
You should recieve the Oscar award of Teaching.Indeed you are an amazing Teacher.Your students are the Luckiest out there...
@bencehalmosi8919
@bencehalmosi8919 4 жыл бұрын
@@MathTheBeautiful you made a video where you say this method exists and good. thx. pls don't waste my time before exam anymore. is this really a lesson?
@MathTheBeautiful
@MathTheBeautiful 4 жыл бұрын
@@bencehalmosi8919 kzbin.info/www/bejne/bGbdqICdfL-hi9U
@nhanNguyen-wo8fy
@nhanNguyen-wo8fy 4 жыл бұрын
@@bencehalmosi8919 I just don't like the way you talk to our professor like that. His lecture mean the world to me and professor don't have the duty to teach me or you.
@salsadancer00
@salsadancer00 9 жыл бұрын
Gauss was a beast!
@133839297
@133839297 Жыл бұрын
Only Euler could stand 1 min in that math fight. 😂
@ozzyfromspace
@ozzyfromspace 4 жыл бұрын
The amazing thing is, I thought the “a billion times better” statement was clickbait, or more likely, just a figure of speech. Turns out it really is that much better, at least in the example he showed us. I’m mind blown, this is amazing! I just came from his three videos on how this all works under the hood, and I’m not disappointed. I’m gonna use Gaussian Quadrature to compute the E&M fields in Maxwells equations for a material whose permittivity and permeability vary in time and space. So excited to give this a try! 😁🎊💯🔥🙌🏽
@japhatkorowa
@japhatkorowa 2 жыл бұрын
Your voice makes me to understand the concept very clearly.
@MathTheBeautiful
@MathTheBeautiful 2 жыл бұрын
Thank you! It's nice when a Russian accent stands for something positive.
@abajabbajew
@abajabbajew 9 жыл бұрын
I first learned of Gaussian Quadrature before computers (well, not quite!) but at any rate, I remembered being struck by the lecturer's claim that (for a numerical method) this one was 'exact', which seemed inexplicable. It turns out that GQ is 'exact' but only for polynomials - so if your function IS a polynomial the method is able to find the integral exactly for degree two times the number of sample points used. Here the trancendental function cos^2(x) was still being approximated but in effect by a polynominal of degree 20. (Nice demonstration though)
@MathTheBeautiful
@MathTheBeautiful 9 жыл бұрын
I think it's 2n-1, so degree 19.
@beatleplayer1011
@beatleplayer1011 8 жыл бұрын
Well that definitely contributed quite a lot to my excitement for the course. That accuracy is insane....
@rohitsrao
@rohitsrao 4 жыл бұрын
A click baity video title that is actually true! Loved it. Thanks
@MathTheBeautiful
@MathTheBeautiful 4 жыл бұрын
More click baity than true, to be honest
@yehoshuakahan7187
@yehoshuakahan7187 9 жыл бұрын
Thank you for allowing me the chance to benefit from your knowledge.
@AdityaSingh-cf1jp
@AdityaSingh-cf1jp Жыл бұрын
But how do you KNOW that the Gaussian quadrature method is a better approximation than the rectangle method? For that we would have to know the exact area beforehand right?
@Iamherp
@Iamherp 8 жыл бұрын
I am a 19 year old physics student from the US. Thanks for providing an intuitive and world-class math education for those who cant afford it. Thank you so much.
@d1ng1z
@d1ng1z 4 жыл бұрын
Thank you for explaining this simply and precisely. Great stuff!
@chenweicui7887
@chenweicui7887 Жыл бұрын
Thank you for this perfect introduction! It is really intuitive, appreciate it
@coffeedotbean
@coffeedotbean 3 жыл бұрын
I'm leaving my jaw dropped here. I'll come back for it later. Thank you.
@StephenRayner
@StephenRayner 9 жыл бұрын
I love these thank you so much! please don't stop these are really good.
@laraschupfer6826
@laraschupfer6826 3 жыл бұрын
Thank you for your work!! Just amazing what you have done for us.
@MathTheBeautiful
@MathTheBeautiful 3 жыл бұрын
Thank you - much appreciated!
@forsakensounds
@forsakensounds 6 жыл бұрын
Wonderful example ! An astonishing technique ! :O
@SlykeThePhoxenix
@SlykeThePhoxenix 9 жыл бұрын
Is there anyway to calculate those numbers? Or can you do a video on it? I haven't been through your videos yet if you have, I will check though.
@MathTheBeautiful
@MathTheBeautiful 9 жыл бұрын
SlykeThePhoxenix No, that will come later in the course in the Part on Inner Products.
@MathTheBeautiful
@MathTheBeautiful 4 жыл бұрын
kzbin.info/www/bejne/bGbdqICdfL-hi9U
@desharma90
@desharma90 2 жыл бұрын
Any idea how to use this method for a data set that is not between -1 and 1?
@INT41O
@INT41O Жыл бұрын
shifting and scaling
@Frank_The_Tank22
@Frank_The_Tank22 7 жыл бұрын
That was so awesome!
@alexbenjamin5823
@alexbenjamin5823 10 жыл бұрын
Fantastic lecture!
@melainneescolta5552
@melainneescolta5552 4 жыл бұрын
hello. how did you get the x and w values for each in gaussian quadrature
@MathTheBeautiful
@MathTheBeautiful 4 жыл бұрын
kzbin.info/www/bejne/bGbdqICdfL-hi9U
@alfonshomac
@alfonshomac 10 жыл бұрын
wow, that's crazy!
@AJ-et3vf
@AJ-et3vf 2 жыл бұрын
Awesome video! Thank you!
@sigmatau8231
@sigmatau8231 4 жыл бұрын
super excited...
@MathTheBeautiful
@MathTheBeautiful 4 жыл бұрын
And with good reason! (Also see kzbin.info/www/bejne/bGbdqICdfL-hi9U where this topic is developed)
@JaanuMoorthy
@JaanuMoorthy 4 жыл бұрын
Thank you sir
@zxLoneWolf
@zxLoneWolf 4 жыл бұрын
Very informative, thanks
@moularaoul643
@moularaoul643 3 жыл бұрын
Perfect!!!
@rubayettanveer3479
@rubayettanveer3479 5 жыл бұрын
Good. Keep it up.
@gustavlotz5415
@gustavlotz5415 3 жыл бұрын
awesome
@ivanzagar8672
@ivanzagar8672 7 жыл бұрын
Tell me more X3
@anirudhkarumuri4341
@anirudhkarumuri4341 Ай бұрын
The last column should be f(x) *w and not f(x) 😅
@MathTheBeautiful
@MathTheBeautiful 23 күн бұрын
Yes! Thank you
@sollovesflowers4899
@sollovesflowers4899 3 жыл бұрын
4:19
@kartickmanna8466
@kartickmanna8466 7 жыл бұрын
My GOD ... Mathematics shows the way to all the Sciences ...........
@howmathematicianscreatemat9226
@howmathematicianscreatemat9226 6 жыл бұрын
KARTICK MANNA May i Quote you? :) I love your comment!
@kitsVideo
@kitsVideo 8 жыл бұрын
Yeah but 10 points with Gaussian quadrature with that much floating point arithmetic it is way more computationally intensive than approximating by left point rectangles, which makes the example misleading with regards to how useful gaussian quadrature actually is.
@MathTheBeautiful
@MathTheBeautiful 8 жыл бұрын
Why would you say it's more computationally intensive? I think it's about the same amount of computation since each method evaluates the function 10 times.
@kitsVideo
@kitsVideo 8 жыл бұрын
Wrong word, sorry. I meant computationally expensive. Floats, especially high precision ones require more cycles(I am referring to the csubi*f(xsubi) part of the calculation here.), so from a computer hardware perspective Gaussian quadrature cannot compute an equal n in approximately the same number of cycles. That being said Gaussian quadrature is still faster(fewer cycles) for equal precision, because you need fewer operations. Ergo you could get the same precision with n=2 or 3 compared to a 10 point numerical integration using left points. What I am getting at is that from a numerical computing perspective either method can reach arbitrary precision simply by increasing n, so the real question is which one gets the most precision for the fewest cycles. I wasn't trying to say Gaussian quadrature is a bad solution, in fact it is strictly superior in any case I can think of, but that it is not as superior as a simple n=10 comparison for both would make it seem.
@MathTheBeautiful
@MathTheBeautiful 8 жыл бұрын
I don't quite follow the details of your argument, but it sounds like an interesting point. Another common way to look at it is this: the rectangle rule is exact only for 0-th degree polynomials, while the 10-point Gaussian is exact for up to 19-th degree polynomials. I'm guessing Gaussian quadrature may take twice the flops for the same number of sampling points, which doesn't really offset the spectacularly higher convergence rate.
@scitwi9164
@scitwi9164 7 жыл бұрын
I don't quite get it either: In both cases there are 10 points, 10 evaluations of the function, and 10 floating-point multiplications + 9 additions. The only difference between them is how you choose the points and their weights, which at most could require twice as much work, but the algorithmic complexity is still the same, and this is quite good for a million-times improvement in precision.
@SpaghettiToaster
@SpaghettiToaster 6 жыл бұрын
Brian Durbin the quality of a numerical approximation that was invented 200 years ago is not to be evaluated in terms of how fast specific current cpu architectures can compute it. That's preposterous.
@faiz_uddin
@faiz_uddin Жыл бұрын
Math is really very beautiful..Thumbs up to @MathTheBeautiful
@mueez.mp4
@mueez.mp4 2 жыл бұрын
4:20
@MathTheBeautiful
@MathTheBeautiful 23 күн бұрын
Let freedom reign!
Gaussian Quadrature 2: How to Determine the Weights
12:34
MathTheBeautiful
Рет қаралды 48 М.
How Much Tape To Stop A Lamborghini?
00:15
MrBeast
Рет қаралды 239 МЛН
УДИВИЛ ВСЕХ СВОИМ УХОДОМ!😳 #shorts
00:49
HARD_MMA
Рет қаралды 4,1 МЛН
This Game Is Wild...
00:19
MrBeast
Рет қаралды 190 МЛН
Parabolas and Archimedes - Numberphile
9:24
Numberphile
Рет қаралды 353 М.
Gaussian Quadrature 3: The Explanation of the Technique
12:38
MathTheBeautiful
Рет қаралды 34 М.
The Big Picture of Linear Algebra
15:57
MIT OpenCourseWare
Рет қаралды 985 М.
Ramanujan: Making sense of 1+2+3+... = -1/12 and Co.
34:31
Mathologer
Рет қаралды 3,4 МЛН
The Gaussian Integral
10:09
RandomMathsInc
Рет қаралды 669 М.
Gauss Quadrature
14:39
NPTEL-NOC IITM
Рет қаралды 7 М.
I never understood why you can't go faster than light - until now!
16:40
FloatHeadPhysics
Рет қаралды 4 МЛН
Kepler’s Impossible Equation
22:42
Welch Labs
Рет қаралды 212 М.
Gaussian Quadrature 1: Summary of Legendre Polynomials
9:19
MathTheBeautiful
Рет қаралды 45 М.