Generative Adversarial Networks: A Beginner's Guide to GANs

  Рет қаралды 1,662

Code With Aarohi

Code With Aarohi

Күн бұрын

Пікірлер: 33
@Sunil-ez1hx
@Sunil-ez1hx Ай бұрын
Awesome video ma’am
@CodeWithAarohi
@CodeWithAarohi 26 күн бұрын
Thanks!
@Syedzamangallani
@Syedzamangallani 25 күн бұрын
THANKYOU SO MUCH MAM FOR YOU THIS TO AND TO MUCH KIND VIDEO YOU DESERVE MILLIONS OF VIEW SUBSCRIBER
@CodeWithAarohi
@CodeWithAarohi 24 күн бұрын
You're very welcome! I'm glad you found it helpful.
@arnavthakur5409
@arnavthakur5409 Ай бұрын
Your way of explaination is excellent as always
@CodeWithAarohi
@CodeWithAarohi 26 күн бұрын
Thanks!
@dibyajyotiacharya8916
@dibyajyotiacharya8916 25 күн бұрын
Great video ma'am🙌 Keep posting such informative videos
@CodeWithAarohi
@CodeWithAarohi 24 күн бұрын
I'm glad you found it helpful!
@jeffg4686
@jeffg4686 Ай бұрын
@2:45 - looks like StackGAN didn't do so good. That bird has black wings Maybe it's never seen any red birds with white wings, but that means it's not zero-shot really. not performing well as zero-shot. Just adding some few notes of possible generation flow here (generally speaking) Transposed Convolution 1 - generate visual patterns like edges or color gradients from noise seeds Transposed Convolution 2 - generate encodings of larger shapes, textures, or object parts Transposed Convolution 3 - maps add fine-grained details and realistic effects like shading and reflections. Output Layer -encode the final image structure and details in a way that combines all previous encodings into an image. something like that... I'm still learning, but I like to see it from high perspective.
@CodeWithAarohi
@CodeWithAarohi 26 күн бұрын
Haha, you're totally right about the bird! Thanks for pointing that out! I appreciate your breakdown of the transposed convolution layers too, it's great to see how you're thinking about the generation flow. Keep up the great work!
@pifordtechnologiespvtltd5698
@pifordtechnologiespvtltd5698 Ай бұрын
Nice video
@CodeWithAarohi
@CodeWithAarohi 26 күн бұрын
Thanks!
@worldsdata2332
@worldsdata2332 2 күн бұрын
Thank You So Much Ma'am,
@CodeWithAarohi
@CodeWithAarohi 11 сағат бұрын
You're welcome! 😊
@HINITECH
@HINITECH 12 күн бұрын
very help full mam
@CodeWithAarohi
@CodeWithAarohi 11 күн бұрын
Glad it helped!
@jynpogger
@jynpogger 26 күн бұрын
Thank You!!!
@CodeWithAarohi
@CodeWithAarohi 24 күн бұрын
You're welcome!
@sanjuanand3056
@sanjuanand3056 Ай бұрын
Superb vedeo Madam your explanation is clr and awesome
@CodeWithAarohi
@CodeWithAarohi 26 күн бұрын
Glad it helped!
@atulpandey1979
@atulpandey1979 Ай бұрын
Can you please create a separate playlist for GANs
@decode168
@decode168 Ай бұрын
Amazing 😻 😻 , I would like to request you a video related to Diffusion Models for Scene Text, please. thanks.
@CodeWithAarohi
@CodeWithAarohi 26 күн бұрын
Thank you! Noted
@mohammadnuruzzaman5195
@mohammadnuruzzaman5195 7 күн бұрын
Nice video ma’am please explain VAEs
@CodeWithAarohi
@CodeWithAarohi 7 күн бұрын
Noted! I will make a video on VAEs soon.
@soravsingla6574
@soravsingla6574 2 күн бұрын
Super
@CodeWithAarohi
@CodeWithAarohi 11 сағат бұрын
Thanks
@sanathspai3210
@sanathspai3210 5 күн бұрын
Hi Arohi I have one doubt, How does discriminator works for batches of images? So if batch size is 4 then 4 real images will be compared with 4 random generated images?
@CodeWithAarohi
@CodeWithAarohi 5 күн бұрын
Yes, that's correct! For real images- The discriminator's predictions are compared with the valid labels (a tensor of ones, [1, 1, 1, 1] for a batch of size 4). For real images the discriminator tries to output probabilities close to 1. For fake images- The discriminator's predictions are compared with the fake labels (a tensor of zeros, [0, 0, 0, 0] for a batch of size 4).For fake images discriminator tries to output probabilities close to 0.
@noorahmadharal
@noorahmadharal Ай бұрын
Please share the notes. It will be very helpful. Thanks
@ayushmathur4083
@ayushmathur4083 Ай бұрын
Can you please make a video showing the python coding for GAN network, also please help me, I need to extract local features of the images to train the model, not the overall global positioning, is CNN a good option for that?
@CodeWithAarohi
@CodeWithAarohi 26 күн бұрын
Sure, Soon!
@SureshYadav-xb7zh
@SureshYadav-xb7zh Ай бұрын
Ma'am please provide the ppt of it
GANs Implementation: Creating Faces that Don't Exist
55:11
Code With Aarohi
Рет қаралды 894
What is Agentic AI ?
9:38
Code With Aarohi
Рет қаралды 1,1 М.
Mom Hack for Cooking Solo with a Little One! 🍳👶
00:15
5-Minute Crafts HOUSE
Рет қаралды 23 МЛН
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
The Math Behind Generative Adversarial Networks Clearly Explained!
17:04
L-11 What is AI Agent and LLM Agent
13:54
Code With Aarohi
Рет қаралды 1 М.
L-12 LangChain Agents and Tools | Step by Step Implementation
17:33
Code With Aarohi
Рет қаралды 205
What are GANs (Generative Adversarial Networks)?
8:23
IBM Technology
Рет қаралды 310 М.
Large Concept Models (LCMs) by Meta: The Era of AI After LLMs?
10:23
AI Papers Academy
Рет қаралды 25 М.
Google's 9 Hour AI Prompt Engineering Course In 20 Minutes
20:17
Tina Huang
Рет қаралды 172 М.
The Essential Main Ideas of Neural Networks
18:54
StatQuest with Josh Starmer
Рет қаралды 1 МЛН
Generative AI Vs Agentic AI
5:11
Code With Aarohi
Рет қаралды 1,3 М.