You're the only person that explained this in a manner that allowed me to legitimately understand these topics. Rlly helping me out in my CIS class. Thanks a lot!
@UnfoldDataScience Жыл бұрын
Thanks a lot.
@dhanushkannagovindaraju8069 Жыл бұрын
i am regretting now for joining college wasting lakhs of money to learn nothing..but 5 mins u made the concept easy to understand...Hats off sir..
@yanzhenhuang982010 ай бұрын
You simply saved my life. Thanks!!!
@fatimazohrabechlaghem76803 жыл бұрын
Lovely video!! I needed this for my exam. Can you please try to answer the questions you asked at the end? here are my guesses: Which model will be effected by missing data: Descriminative Which model will need more data: Descriminative. Less data: generative which model will be effected by outliers: i guess both? which model will need more calculus: I think Descriminative which model will tend to overfit: descriminative as well. Please feel free to answer and correct with simple explanations as soon as you can as my exam is approaching. I very much appreciate this! new subscriber:)
@UnfoldDataScience3 жыл бұрын
Good answers Fatima.
@damikaanupama3788 Жыл бұрын
I think there should be some modifications: - Outliers have a greater impact on generative models due to the smaller amount of data points included. - Because generative models obtain the distribution of current data and examine it to the most likely distribution, they require more mathematics than discrete models.
@Days_Gone3 жыл бұрын
Explanation was so good! Also the quiz at the end, wow! Nicely done
@UnfoldDataScience3 жыл бұрын
Thanks Rishabh.
@Mauricio-rg4lt5 ай бұрын
Very clear explanation. I like the example and the visualization! I am a new subscriber!
@amalkumar256 Жыл бұрын
Very helpful sir
@kadourkadouri3505 Жыл бұрын
logit is definitely more prone to overfitting as it relies on more data to learn and there's a good probability that it will fit to noise
@emizemani69583 жыл бұрын
Great explanation! Simple and to the point. Thanks a lot! :)
@UnfoldDataScience3 жыл бұрын
Thank you.
@l.l.360910 ай бұрын
Appreciate this explanation! TY!
@Aaron_Patrick_20042 ай бұрын
Nice Explanation Sir Thanks
@ShivamTiwari-on2kl Жыл бұрын
Outliers will affect only Discriminative right? or both? Both seems to be the right ans and my logic for it is that we already know that linear models see their curves affected by outliers while in the case of an algo like gaussian nb, the likelihood of an outlier happening will be very low for the given distribution and so that will bring the probability down. Can u please confirm if I am right or wrong?
@shobhamourya83963 жыл бұрын
Discrimivative models need more data therefore tend to be overfitted whereas Generative models built with less data may not generalize well with new data due to bias.
@UnfoldDataScience3 жыл бұрын
Yes we can say like it Shobha.
@gothams11953 жыл бұрын
Bhai i like your videos, I wish you grow on youtube .
@UnfoldDataScience3 жыл бұрын
Thanks Gotham.
@aakashmittal8598 Жыл бұрын
Thanks for making us understand in such an easy way ✨🙏
@UnfoldDataScience Жыл бұрын
My pleasure 😊
@swatisingh40412 жыл бұрын
please make a video on Generative adversarial network on regression problem. There are so many GAN models for Images, but i couldn't find one for continuous values
@Anthestudios3 жыл бұрын
Many thanks from Belgium!
@UnfoldDataScience3 жыл бұрын
Thanks for watching.
@che_sta3 жыл бұрын
Thank you! Awesome video, really great analogies and very clear.
@UnfoldDataScience3 жыл бұрын
Glad it was helpful!
@swethanandyala Жыл бұрын
Thank you for your clear explanation Aman👍
@UnfoldDataScience Жыл бұрын
My pleasure
@borna430 Жыл бұрын
What kind of background you need to get into Data science or AI concept?
@UnfoldDataScience Жыл бұрын
Statistics + Mathematics to start with
@mouleshm2103 жыл бұрын
Hi sir, Can you take video on real-time A/B testing at the time of model deployment?
@UnfoldDataScience3 жыл бұрын
ok
@abhisheksaini52173 жыл бұрын
Thank you Sir.. Nice explanation
@UnfoldDataScience3 жыл бұрын
Welcome Abhishek.
@arichandranr36262 жыл бұрын
Hi, can you make video for HMM model for Time series dataset?
@pavan.kumar.bb.b.7088 Жыл бұрын
Good explanation
@anbesivam76863 жыл бұрын
Hi Aman, I just started using Python. I am very basics. Please tell important functions that's very much needed for data scientist. Or tell where I can learn Python in advance level. Note: i am unemployed.
@KairavLive Жыл бұрын
Just go thru the Code with Harry KZbin channel.finish python.. rest will follow
@borna430 Жыл бұрын
So if my eyes are closed and someone gives me a piece of fruit and ask to taste it and tell me what it is. That would be discriminative?
@sandipansarkar92113 жыл бұрын
finished watching
@nikitasharma49572 жыл бұрын
Sir please deep generative model pr vedio bnaiye
@nikhielsingh7482 жыл бұрын
great video
@UnfoldDataScience2 жыл бұрын
Thank you
@billaspiel3 жыл бұрын
very good video , can you clarify below query the concept of generative mode is not clear in your example alien2 - compared features and did prediction alien1 - drew apple and banana and compared it with test sample and did prediction but to draw apple and banana we need to know its features correct then only you can draw it correctly so both models use features in the end to make prediction , so what difference is here ? how generative mode approach is different from discriminative ?
@Julaiarvind3 жыл бұрын
Generative models don't draw features infact they understand distributions. Whenever a new query point comes, based on the probability, the class with highest probability will be assigned like probability of a mail P(spam) = 0.4 & p(ham) = 0.6. The query point gets assigned to ham class.
@billaspiel3 жыл бұрын
@@Julaiarvind. Thanks but to build a distribution we use frequency of a particular feature so wats the difference .
@sarkersunzidmahmud28752 жыл бұрын
@@billaspiel I think it's like this, In generative, we use features to find the distribution of the data in the n-dimensional plane. For example distribution 1 is for apple and distribution2 is for banana. When a new point will come we will measure the probability of this new point on those two distribution. and in discriminative, we use features to make the prediction directly. What is the best prediction for y given these x? Here we use decision boundary, not the distribution. For example, if the width is 10, the height is 5, color is yellow then it's a Banana.
@makkenamaryelizbeth32869 ай бұрын
Thank you
@leelavathigarigipati38873 жыл бұрын
The way of explanation is too good and the questions you asked, in the end, make me think deeply about what I understood. Thank you
@UnfoldDataScience3 жыл бұрын
You are most welcome
@beautyisinmind21633 жыл бұрын
answer is Discriminative model will be effected by missing data.