Generative and Discriminative Classification | Generative and Discriminative Machine Learning

  Рет қаралды 25,730

Unfold Data Science

Unfold Data Science

Күн бұрын

Пікірлер: 58
@levmeyers
@levmeyers Жыл бұрын
You're the only person that explained this in a manner that allowed me to legitimately understand these topics. Rlly helping me out in my CIS class. Thanks a lot!
@UnfoldDataScience
@UnfoldDataScience Жыл бұрын
Thanks a lot.
@dhanushkannagovindaraju8069
@dhanushkannagovindaraju8069 Жыл бұрын
i am regretting now for joining college wasting lakhs of money to learn nothing..but 5 mins u made the concept easy to understand...Hats off sir..
@yanzhenhuang9820
@yanzhenhuang9820 10 ай бұрын
You simply saved my life. Thanks!!!
@fatimazohrabechlaghem7680
@fatimazohrabechlaghem7680 3 жыл бұрын
Lovely video!! I needed this for my exam. Can you please try to answer the questions you asked at the end? here are my guesses: Which model will be effected by missing data: Descriminative Which model will need more data: Descriminative. Less data: generative which model will be effected by outliers: i guess both? which model will need more calculus: I think Descriminative which model will tend to overfit: descriminative as well. Please feel free to answer and correct with simple explanations as soon as you can as my exam is approaching. I very much appreciate this! new subscriber:)
@UnfoldDataScience
@UnfoldDataScience 3 жыл бұрын
Good answers Fatima.
@damikaanupama3788
@damikaanupama3788 Жыл бұрын
I think there should be some modifications: - Outliers have a greater impact on generative models due to the smaller amount of data points included. - Because generative models obtain the distribution of current data and examine it to the most likely distribution, they require more mathematics than discrete models.
@Days_Gone
@Days_Gone 3 жыл бұрын
Explanation was so good! Also the quiz at the end, wow! Nicely done
@UnfoldDataScience
@UnfoldDataScience 3 жыл бұрын
Thanks Rishabh.
@Mauricio-rg4lt
@Mauricio-rg4lt 5 ай бұрын
Very clear explanation. I like the example and the visualization! I am a new subscriber!
@amalkumar256
@amalkumar256 Жыл бұрын
Very helpful sir
@kadourkadouri3505
@kadourkadouri3505 Жыл бұрын
logit is definitely more prone to overfitting as it relies on more data to learn and there's a good probability that it will fit to noise
@emizemani6958
@emizemani6958 3 жыл бұрын
Great explanation! Simple and to the point. Thanks a lot! :)
@UnfoldDataScience
@UnfoldDataScience 3 жыл бұрын
Thank you.
@l.l.3609
@l.l.3609 10 ай бұрын
Appreciate this explanation! TY!
@Aaron_Patrick_2004
@Aaron_Patrick_2004 2 ай бұрын
Nice Explanation Sir Thanks
@ShivamTiwari-on2kl
@ShivamTiwari-on2kl Жыл бұрын
Outliers will affect only Discriminative right? or both? Both seems to be the right ans and my logic for it is that we already know that linear models see their curves affected by outliers while in the case of an algo like gaussian nb, the likelihood of an outlier happening will be very low for the given distribution and so that will bring the probability down. Can u please confirm if I am right or wrong?
@shobhamourya8396
@shobhamourya8396 3 жыл бұрын
Discrimivative models need more data therefore tend to be overfitted whereas Generative models built with less data may not generalize well with new data due to bias.
@UnfoldDataScience
@UnfoldDataScience 3 жыл бұрын
Yes we can say like it Shobha.
@gothams1195
@gothams1195 3 жыл бұрын
Bhai i like your videos, I wish you grow on youtube .
@UnfoldDataScience
@UnfoldDataScience 3 жыл бұрын
Thanks Gotham.
@aakashmittal8598
@aakashmittal8598 Жыл бұрын
Thanks for making us understand in such an easy way ✨🙏
@UnfoldDataScience
@UnfoldDataScience Жыл бұрын
My pleasure 😊
@swatisingh4041
@swatisingh4041 2 жыл бұрын
please make a video on Generative adversarial network on regression problem. There are so many GAN models for Images, but i couldn't find one for continuous values
@Anthestudios
@Anthestudios 3 жыл бұрын
Many thanks from Belgium!
@UnfoldDataScience
@UnfoldDataScience 3 жыл бұрын
Thanks for watching.
@che_sta
@che_sta 3 жыл бұрын
Thank you! Awesome video, really great analogies and very clear.
@UnfoldDataScience
@UnfoldDataScience 3 жыл бұрын
Glad it was helpful!
@swethanandyala
@swethanandyala Жыл бұрын
Thank you for your clear explanation Aman👍
@UnfoldDataScience
@UnfoldDataScience Жыл бұрын
My pleasure
@borna430
@borna430 Жыл бұрын
What kind of background you need to get into Data science or AI concept?
@UnfoldDataScience
@UnfoldDataScience Жыл бұрын
Statistics + Mathematics to start with
@mouleshm210
@mouleshm210 3 жыл бұрын
Hi sir, Can you take video on real-time A/B testing at the time of model deployment?
@UnfoldDataScience
@UnfoldDataScience 3 жыл бұрын
ok
@abhisheksaini5217
@abhisheksaini5217 3 жыл бұрын
Thank you Sir.. Nice explanation
@UnfoldDataScience
@UnfoldDataScience 3 жыл бұрын
Welcome Abhishek.
@arichandranr3626
@arichandranr3626 2 жыл бұрын
Hi, can you make video for HMM model for Time series dataset?
@pavan.kumar.bb.b.7088
@pavan.kumar.bb.b.7088 Жыл бұрын
Good explanation
@anbesivam7686
@anbesivam7686 3 жыл бұрын
Hi Aman, I just started using Python. I am very basics. Please tell important functions that's very much needed for data scientist. Or tell where I can learn Python in advance level. Note: i am unemployed.
@KairavLive
@KairavLive Жыл бұрын
Just go thru the Code with Harry KZbin channel.finish python.. rest will follow
@borna430
@borna430 Жыл бұрын
So if my eyes are closed and someone gives me a piece of fruit and ask to taste it and tell me what it is. That would be discriminative?
@sandipansarkar9211
@sandipansarkar9211 3 жыл бұрын
finished watching
@nikitasharma4957
@nikitasharma4957 2 жыл бұрын
Sir please deep generative model pr vedio bnaiye
@nikhielsingh748
@nikhielsingh748 2 жыл бұрын
great video
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thank you
@billaspiel
@billaspiel 3 жыл бұрын
very good video , can you clarify below query the concept of generative mode is not clear in your example alien2 - compared features and did prediction alien1 - drew apple and banana and compared it with test sample and did prediction but to draw apple and banana we need to know its features correct then only you can draw it correctly so both models use features in the end to make prediction , so what difference is here ? how generative mode approach is different from discriminative ?
@Julaiarvind
@Julaiarvind 3 жыл бұрын
Generative models don't draw features infact they understand distributions. Whenever a new query point comes, based on the probability, the class with highest probability will be assigned like probability of a mail P(spam) = 0.4 & p(ham) = 0.6. The query point gets assigned to ham class.
@billaspiel
@billaspiel 3 жыл бұрын
@@Julaiarvind. Thanks but to build a distribution we use frequency of a particular feature so wats the difference .
@sarkersunzidmahmud2875
@sarkersunzidmahmud2875 2 жыл бұрын
@@billaspiel I think it's like this, In generative, we use features to find the distribution of the data in the n-dimensional plane. For example distribution 1 is for apple and distribution2 is for banana. When a new point will come we will measure the probability of this new point on those two distribution. and in discriminative, we use features to make the prediction directly. What is the best prediction for y given these x? Here we use decision boundary, not the distribution. For example, if the width is 10, the height is 5, color is yellow then it's a Banana.
@makkenamaryelizbeth3286
@makkenamaryelizbeth3286 9 ай бұрын
Thank you
@leelavathigarigipati3887
@leelavathigarigipati3887 3 жыл бұрын
The way of explanation is too good and the questions you asked, in the end, make me think deeply about what I understood. Thank you
@UnfoldDataScience
@UnfoldDataScience 3 жыл бұрын
You are most welcome
@beautyisinmind2163
@beautyisinmind2163 3 жыл бұрын
answer is Discriminative model will be effected by missing data.
@UnfoldDataScience
@UnfoldDataScience 3 жыл бұрын
True, thank you.
@osmaninci672
@osmaninci672 2 жыл бұрын
0:45 he asked u back What is Fruit. 😂😂😂😂
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
🤣🤣
@AdityaAgarwal-v3b
@AdityaAgarwal-v3b Жыл бұрын
great video
@UnfoldDataScience
@UnfoldDataScience Жыл бұрын
Thanks Aditya.
요즘유행 찍는법
0:34
오마이비키 OMV
Рет қаралды 12 МЛН
Sigma girl VS Sigma Error girl 2  #shorts #sigma
0:27
Jin and Hattie
Рет қаралды 124 МЛН
Какой я клей? | CLEX #shorts
0:59
CLEX
Рет қаралды 1,9 МЛН
How to fine tune LLM | How to fine tune Chatgpt | How to fine tune llama3
31:25
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 438 М.
AI vs ML vs DL vs Generative Ai
16:00
Krish Naik
Рет қаралды 61 М.
Genius Machine Learning Advice for 10 Minutes Straight
9:46
Data Sensei
Рет қаралды 103 М.
Generative vs Discriminative AI Models
3:12
Computing For All
Рет қаралды 2,7 М.