Thank you Krish! This is very detailed, and explains the GridSearchCV pretty clearly. It helped me a lot. Thank you again for your time and efforts in putting this together!
@ayushpalak5 жыл бұрын
Such a neat explanation! Keep posting . God bless.
@akfaisel4 жыл бұрын
YT is suggesting this guys videos and they are very simple and understandable
@prachiarora78235 жыл бұрын
Krish it's a very crisp n clear explanation of SVM. Really helpful and these 18 minutes are worth it. Understood the concept. Thanks
@aiz_i5647 ай бұрын
Game-changer! This is the best explanation! Thanks, Sir! God bless you!
@sagaryadav34735 жыл бұрын
Cool ! One of the best example I have seen, the way you explain is just wow :)
@harikrishna-harrypth3 жыл бұрын
Krish Naik, you are a Legendary teacher !!! Thanks much for your videos blud!
@AshishBangwal2 жыл бұрын
bruh you are the Top G !!! respect
@kingolafff77393 жыл бұрын
All other youtube channels are a waste of time! what a well explained video ;) thanks millions of times :*******************
@balamurugansanjeevirayar5 жыл бұрын
Very Good explanation of grid search. Clean and neat.
@suryameda62155 жыл бұрын
Very neat and elegant explanation. Thank yo
@himanshuinca5 жыл бұрын
Wow man. Great example. !! Well Explained with the example and code !
@adeyinkasotunde68704 жыл бұрын
Bravo........ God bless you real good. You really imparted me with this great techniques. Well done sir. Nice one. wow.... cudos....
@adeyinkasotunde68704 жыл бұрын
I will love to see you teaching us on how to use XGBRegressor for example ( say House Sale price) just like the one on Kaggle.com. Second, I will love to see how to remove outliers and lastly how to normalize or standardize the data set. Thanks. Hope we will see you do something on that very soon. Thanks a lot Sir. More power to your elbow. God bless 🙏.
@kirangeorge76594 жыл бұрын
That was a really clear explanation. Thank you!
@VamsiKrishna-vg6vd5 жыл бұрын
Very cleared explained. Thank u so much.. Keep posting more videos.
@michaelschlitzer87424 жыл бұрын
You are a good teacher! You have answered a question for me very succinctly. Thank you so much,
@mayurkhandeshe48135 жыл бұрын
very well explained by krish sir .....easy to understand
@ibrahimmondal91042 жыл бұрын
thank u sir.....now I understand how to apply best model under the specifics algo.
@AkshaykumarPatilAkki4 жыл бұрын
Fantastik Explanation Anna... Thank you very much for the Knowledge which you are sharing with us.
@shivadumnawar77414 жыл бұрын
Great tutorial
@subodhagrawal40875 жыл бұрын
oh..after seeing the 20 videos, I understand from your explanation.
@jitenkumarsahoo6674 жыл бұрын
Thanks sir......its properly explained.... couldn't find it in Google or anywhere...
@ahmedbouchou68935 жыл бұрын
Thank you Krish ! Where can I find a simplified description of each model parameters. Sometimes the python documentation is very hard to understand.
@KieranBathgate4 жыл бұрын
Krish you're an amazing teacher
@shaiksuleman31914 жыл бұрын
Wow Super.No More Questions asked
@rambaldotra22213 жыл бұрын
Mind Blowing Sir.
@lokeshsutrave49065 жыл бұрын
Great explanation. Thanks for sharing.
@manthanladva65475 жыл бұрын
Thanks a lot brother for the detail explanation . My topic get cleared. Thanks
@arjunpukale33105 жыл бұрын
I think in gridsearch.fit u must give X,y rather than Xtrain, ytrain coz cross validation in gridsearch will divide your entire dataset into train, test .
@saxenarachit5 жыл бұрын
even i think so. Can you pl validate this @Krish Naik
@arjunpukale33105 жыл бұрын
@@saxenarachit no, i realized afterwards that u have to keep xtest for final testing on unseen data. So u can use only remaining dataset that is xtrain for grid search
@saxenarachit5 жыл бұрын
@@arjunpukale3310 ok... In what situation we will use normal cross validation (not of grid search cv) to get the cross val score on whole data (X, y) and whats the purpose. Can you help me steps when to do cross validation on which data and when grid search cv on which data. I am bit confused here.
@arjunpukale33105 жыл бұрын
@@saxenarachit see 1st step is to divide your dataset into train and test. And keep the test data untouched till the end. Now you have your train data in your hand on which you have to fit your model. So now decide which model you will use to fit your train data. Suppose u select svm then use grid search on this model(use training data). And this will give you best parameter and cross val score of this model with best parameters. So you dont need to apply cross val again. Now using thise best features from grid search create your svm model and fit it with your train data. And now finally your model is created. So now test your model with unseen data that is your test data and see how well it works on your unseen test data based on accuracy, confusion matrix etc
@saxenarachit5 жыл бұрын
@@arjunpukale3310 Thanks for this dear... One more thing - correct me where I am wrong .... 1- EDA, handling missing data, feature selection, scaling on whole data 2- Split the data for test and keep until very end using train test split on whole data 3- Applying algorithms, Imbalance techniques if needed, Handling Over/Underfitting probs. if needed, GridSearch CV to get best params on train data 4- Make the model with the best algo and best params on train data 5- Test the model accuracy with different measures 6- All Good - Deploy the model else goto 1 thru all steps except 2 to gain more accuracy.
@saisumantabehera38915 жыл бұрын
nice explanation Krish, how can we use grid search for multi-label classification problem
@Trouble.drouble4 жыл бұрын
Superb explanation sir, how to use grid search CV for deep learning models and when to use random search CV
@the_imposter_analyst5 жыл бұрын
this was so helpful. Been having great difficulty in parameter tuning, this has made it so much better, thank you sir
@iscream31845 жыл бұрын
you are a life saver
@sudeshnadutta57024 жыл бұрын
Krish can you please explain the difference between cross validation and gridsearch cross validation? As in how do we use cv or gridsearchcv to select among different models?
@text-book-pages4 жыл бұрын
Sir accept my thanks. It was an amazing video
@muhammadsaadmansoor77774 жыл бұрын
Did I like this video, hell yes. Loved it.
@tomtom-wv3hc4 жыл бұрын
Amazing Teacher !!!! Nice and clean explanation :)
@shankar31095 жыл бұрын
It's Crystel Clear... Thanks Krish..
@sharifdmd5 жыл бұрын
Very excellent detailed explanation ..
@csit309311 ай бұрын
You are a blessing 😊
@KiranKumar-lq4td3 жыл бұрын
Nice explanation 💯
@usaikiran96 Жыл бұрын
Please make a separate video on running gridsearchcv on Random Forest algorithm.
@thecosmiccases2 жыл бұрын
Great Explanation
@panchaldp4 жыл бұрын
Good Explanation ...Thanks ...!!
@yutishah16732 жыл бұрын
Hi Krish! I have a question, while performing logistic regression when I want to perform gridsearch for hyper parameter tuning, I want to also find precision, F1 score, recall, ROC AUC, etc. So while trying to perform that gridsearch is returning me NAN values. How to handle this situation?
@nagandranathvemishetti92473 жыл бұрын
Hi krish sir can u make a video on applying LDA and perform hyper parameter tuning.
@jo12614 жыл бұрын
Very good explanation! Thank you!
@rahulsonvane81413 жыл бұрын
Thank you so much, you explained it very nicely :)
@amritanigote3 жыл бұрын
Very Helpful... Thank you!!
@sandipansarkar92113 жыл бұрын
great explanation.thanks
@zee46543 жыл бұрын
Sir please can you provide a link where to I find the freight travel time prediction Dataset ??? 😔
@Mustistics2 жыл бұрын
Thanks for the video. I see you didn't take into account class imbalance, which makes accuracy not very reliable.
@kamal67625 жыл бұрын
I have one doubt that why we only transform the X_test data set not fit first or we have to use fit data(mean and SD) from the X_train?
@Ash-bc8vw3 жыл бұрын
Hello, can you suggest a good laptop for running machine learning codes Or the specification
@bajajchirag1235 жыл бұрын
How do we get to know that the provided range is the correct? For eg. in the given case, you used the range from 1 to 1000 for C value and for gamma the range was from 0.1 to 0.9. why we haven't taken the range to be .001 to 12130 or anything else for C values and similarly for the gamma values. and there are so many other parameters as well but we considered only these 2. Currently, I am trying to use this gridsearchCV on a linear regression model. then what should be the param_grid values I should take. Please provide a pseudo code and explain if possible. Thanks in advance.
@subodhagrawal40875 жыл бұрын
brother, this was just an example. I real world there will be 100s of values.
@arjunpukale33105 жыл бұрын
U must know the math behind it
@kushalminachi4455 жыл бұрын
Can we use RandomizedSearchCV instead of gridsearchcv?
@mickaelsgro33704 жыл бұрын
hi , please how do u chose "cv=10" in GridSearchCV ? Thanks a lot
@sandeepnigam7574 жыл бұрын
Is this good technique if we are applying feature scaling on test data??
@harpreetsandhu76974 жыл бұрын
can we use it on naive bayes algorithm
@gayatrikvr11114 жыл бұрын
Hi Krish How do we choose values for the params_grid?
@ajaykushwaha-je6mw3 жыл бұрын
Hi Sir, after running this code: classifier.fit(X_train,y_train) you are getting various parameter in o/p section but i am getting just one. why sir ?
@louerleseigneur45323 жыл бұрын
Thanks Krish
@Vinit_Ambat2 жыл бұрын
Great video!
@awanishkumar63084 жыл бұрын
Hello sir sorry to ask, Here we have fitted the model without scaled features (I.e- X_train) then why you have scaled the features using StandardScaler??
@karthickkk94272 жыл бұрын
Thank You Krish, When GridSearchCV is performed on Random Forest, with scoring based on accuracy, best parameters identified seems to be overfit. Training data accuracy= 91% and test data accuracy=81%. Any suggestions to deal with this
@awanishkumar63084 жыл бұрын
And could you please tell me that what sections of Big Data and Hadoop is required for Data science and machine learning
@khanmohammedaamir89003 жыл бұрын
But how to know , which parameter we can pass and what type of parameter is not important ?
@luanaleticia26445 жыл бұрын
So great. Thanks!
@maYYidtS5 жыл бұрын
is that necessary to fit (x_train,y_train)again instead of fit(x,y) at 14:15 because the cv parameter will automatically split the data right?
@sneha69994 жыл бұрын
Hi Krish , You are doing an amazing job ,your vidios are really helpful . Could you please tell me why are we not performing sc.fit transform on X_test ?
@nitinpatil10745 жыл бұрын
Vary nice explanation
@oozzar28415 жыл бұрын
Is this same for multi classification SVM or not?
@Rishi-fo8qj5 жыл бұрын
What if my grid search accuracy itself is not good ?
@prashantig12055 жыл бұрын
Thank you so much! Shift+Tab is not working(jupyter notebook) for me to see the help, any settings need to do?
@manulavishvajith45514 жыл бұрын
Hi Krish, great explanation. Thanks. Would you mind giving me an idea of your PC configurations, I plan to build a better PC for my machine learning projects. Basically I'm currently unable to execute high degree polynomial regressions on high dimensions. Would be a great help if you can tell me? Thanks
@deepakgehani5 жыл бұрын
Hi krish. Can you make a video on hypermetric tuning using grid search on Random Forest Classifier
@shanmukhasaratponugupati63084 жыл бұрын
A very very very bigggg thanks
@kiran0824 жыл бұрын
Thank You Krish
@RajKumar-vm2kr4 жыл бұрын
Thank you for making this videos
@lopabhattacharjee38455 жыл бұрын
Very nicely explained. Do you have a similar video for LSTMs with hyperopt or Talos ?
@yigitsevim77414 жыл бұрын
best vşdeo on the youtube
@karanroy-vr1wn4 жыл бұрын
well explained , sir
@rds64845 жыл бұрын
you nailed it man...
@junaidlatif28812 жыл бұрын
Sir. If after scaling x_train, i build model. Now if i have validation data, (few new samples to check prediction). Now should i scale my sample data? Or should I do scaleback my X_train first? Then validate sample data?
@junaidlatif28812 жыл бұрын
6:15
@hilalkucuk52 жыл бұрын
Excellent
@dhairyamehta62773 жыл бұрын
Hey, I had a question, what is C in the parameters passed?
@KiranKumar-lq4td3 жыл бұрын
It's penalty parameter :)
@dhairyamehta62773 жыл бұрын
@@KiranKumar-lq4td oh, forgot why I asked it now😂
@KiranKumar-lq4td3 жыл бұрын
@@dhairyamehta6277 nice😂💯
@abdullahmahammadmir55412 жыл бұрын
Really appreciate
@pratheeeeeesh48394 жыл бұрын
Wonderful !
@sujithkumar_ga5 жыл бұрын
U r a genius bro
@sujithkumar_ga5 жыл бұрын
Need u r help !.. am doing an internship they gave me task .. it would be very helpful if u help me plz.. give u r mail id . So that i can contact you
@kingolafff77393 жыл бұрын
God bless you
@subbaraogannavarapu74054 жыл бұрын
Hi Krish, This is amazing and i have one doubt.. what if we would like to use GridsearchCV for regression Problem? is this the same way we do for regression as well? if not, where it differs.
@prashanthpandu28295 жыл бұрын
hello, Can u explain me why we apply fit_transform on x_train and only transform on x_test data what is difference between them. In the video u meantioned about it but id idnt get it. .
@OriginalJoseyWales5 жыл бұрын
Fit_transform will fit the train data to determine the values of the dataset eg. calculate the mean and std. Transform will apply these values to the dataset. We fit transform the train data set because we use the same values for the test data set. Eg. if we split our dataset into train and test sets we work out the mean on the train dataset but we don't use a different mean for the test set so we only need transform.
@ajaychhillar10335 жыл бұрын
Hey, Krish please make video on Bayesian optimisation for hyperparameter tunning. Thanks in advance
@krishnaik065 жыл бұрын
Hey Ajay yes I will be uploading both random search and Bayesian optimization techniques in a couple of days
@AmitYadav-ig8yt5 жыл бұрын
Sir, You selected some values 10, 100, 1000 in Dictionary - How did you get these values for these parameters, Are they predefined or any ways to select these values?
@krishnaik065 жыл бұрын
No it is not. I have randomly selected it...you can put ur own values
@AmitYadav-ig8yt5 жыл бұрын
@@krishnaik06 Okay Sir, Thank you very much.
@ahmedbouchou68935 жыл бұрын
Thank you Krish ! Where can find a simplified explanation of model parameters. Sometimes the python documentation is hard to understand.
@adityadev28254 жыл бұрын
Awesome
@NR_Tutorials5 жыл бұрын
thanks ... this optimisation for any classification ..?
@maYYidtS5 жыл бұрын
no....every model has different non-default parameters. ex. knn has n_nighbours=10...
@nevilparekh64004 жыл бұрын
good explanation except difference between fit_transform() and transform() methods...