A TRUE LEGEND AND MASTER OF DATA SCIENCE!!!! THANK YOU KRISH NAIK!!! YOU'RE A REAL GEM FOR THE WORLD OF DATA SCIENCE!!!!! GOD BLESS YOU MAN! ✌️💖
@jesuskristus183 жыл бұрын
Great, another Indian/Pakistani “data scientist” from Fiverr.
@rohitbharti28822 жыл бұрын
Explained so well. My confidence in DS increases day by day through your videos. 😊
@Gester20002 жыл бұрын
Let me tell u you are the gem of the game out of all the ones teaching data science on KZbin passing us real world thought process of a datascientist working in a real world scenarios Love from Karachi Pakistan,🇵🇰
@jayanthAILab Жыл бұрын
I love ur clarity on the subject . Best teacher in the youtube
@Schneeirbisify4 жыл бұрын
great work, very clear and helpful for my project that I am working on. Thanks a lot!
@vijaisrivastava16293 ай бұрын
krish bhai... thank you for your help .. i know 20 data scientist who made transition because of your help.. jai sree ram..
@natarajanlalgudi4 жыл бұрын
Thanks again Krish Naik amazing efforts and commitment so grateful.
@amrutabagalkot64078 ай бұрын
BEST VIDEO EVER .....HATS OF TO YOU SIR 🙏
@priyanshshankhdhar3474 жыл бұрын
please do a video on FasterRCNN and Yolo object detection
Sir please make a video on yolo object detection 🙏
@kartikjswl42 жыл бұрын
Damn!!! I couldn't thank you enough for this ever.. 🙏🏻🙏🏻
@soulrider68224 жыл бұрын
Hi Krishna I have seen your most of the video
@priyanshshankhdhar3474 жыл бұрын
if possible.. please do video on faster rcnn and yolo object detection without github repo.. or even with github repo.
@ahmeterdonmez91954 ай бұрын
1:05 question from watchers : "why multiplication?". The result of embarking on this path without learning the necessary mathematics.... So it's a simple probability case. God help them in situations that require more advanced math.
@mutyaluamballa3 жыл бұрын
U just covered all the stuff in one cool video, this just blew my mind bro. I just cant say one reason for not subscribing your channel. Thank you very much...! 💕
@kumawatrohan3 жыл бұрын
Thankyou so much sir for this detailed explanation ❤️
@rayyanmohsin86384 ай бұрын
Shouldn't we split our data before imputing any sort of values to prevent data leakage?
@sunilabans14 жыл бұрын
Thanks for sharing the knowledge.
@write2ruby2 жыл бұрын
9:30 GridSearchCV and RandomizedSearchCV are good
@vaibhavshukla07294 жыл бұрын
Thank you sir 🌟
@ajaykushwaha-je6mw3 жыл бұрын
first time I ma seeing you in funny mood, good to see you like this else aap to bhagwan shanker ki tere gusse mein hi dikhte hain.
@rayyanmohsin86384 ай бұрын
Starts at 11:30
@fozler2 жыл бұрын
Hello sir, I am from Bangladesh and always watch your video. Can you make some videos about fusion models.
@vargabghosh5497 Жыл бұрын
But using tpot can I print the values of the hyper parameter for which our model has best accuracy...
@justthink83193 жыл бұрын
THANK YOU BRO IT WAS AMAZING SESSION
@jiyabyju5653 жыл бұрын
thank you sir...why dont i get accuracy value..? so there is no return value on loss
@sandipansarkar92113 жыл бұрын
finished watching
@tusharpatil19574 жыл бұрын
Telegram link is not opening
@mikefda123 жыл бұрын
hey question how do you get the predictive text?
@manassrivastava64524 жыл бұрын
WHEN WILL OBJECT DETECTION GOING LIVE ??
@ashishsaini50963 жыл бұрын
how u r not getting error while u having 1 as int value in min_samples_split which is not allowed ! although i m getting this error (min_samples_split must be an integer greater than 1 or a float in (0.0, 1.0]; got the integer 1) which is right : we can either use 1.0 float or greater value than int 1
@dhirendrakumarjha73853 жыл бұрын
can i implement these concept if i have continuous value as output ie if I want to do regression problem
@vidyamc43403 жыл бұрын
Grid search will be best I guess
@sajidchoudhary11654 жыл бұрын
Sir Please makes video on Mathematics behind on SVM Regression, AdaBoost Regression, Gradient Boost Classification
@aparnarout20083 жыл бұрын
Good evening sir, I needed some guidance how can I can contact with you?
@harshmalviya74 жыл бұрын
I have tried hyper parameter and my laptop take 6 hrs to give the parameter what should I do ! It is wasting my time.
@LikithVibes4 жыл бұрын
You can run the same code in kaggle.Kaggle provides free access to NVidia K80 GPUs in kernels
@shootgold4 жыл бұрын
Try google colab
@shahnawazkhan16363 жыл бұрын
Best session please conduct such kind of class
@pradheepm13714 жыл бұрын
How to reduce the false positive and false negative
@LikithVibes4 жыл бұрын
As per my understanding and knowledge, if your data is balanced in terms of proportion of two classes and if you have built very good model then automatically your false positive and false negative will be less. But if your data is imbalance, depending on the use case that you are working on you can increase or decrease the threshold to reduce false positive and false negative. But that's a tedious process , so better way is to look at ROC curve.
@neetikagupta85363 жыл бұрын
can we do stratifiedkfold validation in gridsearchcv or randomsearchcv
@sahilp47963 жыл бұрын
Yes, we can use. Sending you a sample code for RandomizedSearchCV skf = StratifiedKFold(n_splits = 5, shuffle = True, random_state = 7) random_search = RandomizedSearchCV(model, param_distributions=params, n_iter=3, scoring='accuracy', n_jobs = -1, cv = skf.split(X_train, y_train), random_state=7)
@hiteshyerekar22044 жыл бұрын
HIi Krish I got this error how to solved it. ValueError: Invalid parameter min_sample_split for estimator RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=None, max_features='auto', max_leaf_nodes=None, max_samples=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=250, n_jobs=None, oob_score=False, random_state=None, verbose=0, warm_start=False). Check the list of available parameters with `estimator.get_params().keys()`.
@ai_beyond_boundaries4 жыл бұрын
i also got the same error
@bharadwajnarayanam99224 жыл бұрын
Hi Hitesh! Can you show the code too?
@hiteshyerekar22044 жыл бұрын
@@bharadwajnarayanam9922 hiii I solved those problem.
@bharadwajnarayanam99224 жыл бұрын
@@hiteshyerekar2204 Cool bro!
@anielkali7044 жыл бұрын
Krish you are amazing, keep it up! One comment, I wouldn't take too high values for the 'max_depth' parameter because of overfitting issues...
@akarshankumar17114 жыл бұрын
It's okay to take high values anyways it's random forest, a high variance base model is needed. And also it's precisely not depth but more related to num of leafs. Hence high value do more good than harm.
@CreatingUtopia4 жыл бұрын
I got an error :cant pickle file and send it to workers when i ran the randomsearch cv
@its_me73634 жыл бұрын
remove 'n_jobs' parameter.
@amexethiotech16192 жыл бұрын
hi good evening
@amexethiotech16192 жыл бұрын
yes
@sunilabans14 жыл бұрын
Yes
@lemuelkbj4933 жыл бұрын
7:33
@parthagarwal45923 жыл бұрын
When you are pissed off of copy pasting things - 46:52
@sandipansarkar92113 жыл бұрын
finished coding
@sunilabans14 жыл бұрын
Yed
@sunitabnsl3 жыл бұрын
the lecture is good but shaking legs does not seem good kris.
@AchinAbhi3 жыл бұрын
Hello everyone, I get an error regarding accessing subscript for the randomizedsearchcv object, 1 from sklearn.model_selection import GridSearchCV 2 param_grid = { ----> 3 'criterion': [rf_randomcv['criterion']], 4 'max_depth': [rf_randomcv['max_depth']], 5 'max_features': [rf_randomcv['max_features']], TypeError: 'RandomizedSearchCV' object is not subscriptable