Emma Pollard: Symmetrization Resistance

  Рет қаралды 35

Hausdorff Center for Mathematics

Hausdorff Center for Mathematics

Күн бұрын

An asymmetric random variable X is said to be symmetrization resistant if every independent random variable Y that produces a symmetric sum X+Y has a greater variance than that of X. Asymmetric Bernoulli random variables were shown to be symmetrization resistant by Kagan, Mallows, Shepp, Vanderbei, and Vardi (1999); Pal (2008) gave a proof using stochastic calculus. Proving symmetrization resistance appears to be difficult: little is known about other asymmetric distributions. We introduce the notion of entropic symmetrization resistance, which is the same as symmetrization resistance except that the entropy (rather than variance) of Y must exceed that of X. We show that Bernoulli random variables exhibit entropic symmetrization resistance exactly when they exhibit symmetrization resistance. We also extend the underlying entropy and variance inequalities to the hypercube. Finally, we explore the possibility of extensions to non-Bernoulli random variables.
This talk is based on joint work with Mokshay Madiman.

Пікірлер
Piotr Nayar: Minimum entropy of a log-concave random variable with fixed variance
1:03:50
Hausdorff Center for Mathematics
Рет қаралды 49
Thomas Courtade: Information inequalities on Euclidean space
46:45
Hausdorff Center for Mathematics
Рет қаралды 79
Молодой боец приземлил легенду!
01:02
МИНУС БАЛЛ
Рет қаралды 2,2 МЛН
Из какого города смотришь? 😃
00:34
МЯТНАЯ ФАНТА
Рет қаралды 2,7 МЛН
А я думаю что за звук такой знакомый? 😂😂😂
00:15
Денис Кукояка
Рет қаралды 4,9 МЛН
Convolutions | Why X+Y in probability is a beautiful mess
27:25
3Blue1Brown
Рет қаралды 716 М.
Joseph Slote: Fourier multipliers for functions on the discrete
52:27
Hausdorff Center for Mathematics
Рет қаралды 79
The Expected Value and Variance of Discrete Random Variables
11:20
jbstatistics
Рет қаралды 367 М.
Tomasz Tkocz: A Rényi entropy interpretation of anti-concentration
46:48
Hausdorff Center for Mathematics
Рет қаралды 51
PMF of a Function of a Random Variable
15:26
MIT OpenCourseWare
Рет қаралды 191 М.
Normal Distribution (PDF, CDF, PPF) in 3 Minutes
5:26
3-Minute Data Science
Рет қаралды 66 М.
Молодой боец приземлил легенду!
01:02
МИНУС БАЛЛ
Рет қаралды 2,2 МЛН