Haystack EU 2023 - Jo Kristian Bergum: Navigating Neural Search: Avoiding Common Pitfalls

  Рет қаралды 1,150

OpenSource Connections

OpenSource Connections

Күн бұрын

Neural search, often known by various names, including semantic search, has reached a stage where it is primarily associated with learned vector representations of queries and documents. This dense representational method reduces the scoring process to a vector similarity function.
In this talk, we take a holistic approach and demystify the neural networks behind these vector representations - the text embedding models. We explore various open-source text embedding models, discussing choosing one by considering factors like language capabilities, task alignment, accuracy, and cost-effectiveness.
Finally, we look at embedding retrieval or vector search and how introducing approximate vector search can degrade the accuracy so much that significantly cheaper retrieval methods will be favorable.
Jo Kristian is a Distinguished Engineer at Yahoo, where he spends his time working on the open-source Vespa.ai serving engine. Jo Kristian has 20 years of experience with deploying search systems at scale.

Пікірлер
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
Правильный подход к детям
00:18
Beatrise
Рет қаралды 11 МЛН
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
小丑女COCO的审判。#天使 #小丑 #超人不会飞
00:53
超人不会飞
Рет қаралды 16 МЛН
Transformers (how LLMs work) explained visually | DL5
27:14
3Blue1Brown
Рет қаралды 4,2 МЛН
GEOMETRIC DEEP LEARNING BLUEPRINT
3:33:23
Machine Learning Street Talk
Рет қаралды 350 М.
How might LLMs store facts | DL7
22:43
3Blue1Brown
Рет қаралды 906 М.
Geoffrey Hinton | Will digital intelligence replace biological intelligence?
1:58:38
Schwartz Reisman Institute
Рет қаралды 175 М.
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 406 М.
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН