You sir, know how to teach. Excellent choice uploading these on KZbin, thanks!
@DrChrisTisdell9 жыл бұрын
Thanks. It is my absolute pleasure!
@KLCII883 жыл бұрын
Almost 10 years later and your explanations are still amongst the best, thank you sir!
@schonnyrules10 жыл бұрын
If this man were my professor I would give him a standing ovation after every lecture.
@DrChrisTisdell9 жыл бұрын
Wow! Thanks!!
@nithisatepetju30646 жыл бұрын
@@DrChrisTisdell Me too Dr. Chris i always give you a standing ovation after see your VDO lecture.
@julianaorcasitas78913 жыл бұрын
@@DrChrisTisdell How cab we get a copy or Download the free PDF
@GeorgiesEmpire312 жыл бұрын
Amazing, you boiled down two weeks worth of lecture in my DE class into one video, AND made it interesting and incredibly easy to follow. Studying just got a whole lot easier!
@anchitrao73746 жыл бұрын
Truly amazing, was not able to find any other video that explained the concepts so thoroughly. Allowed me to really wrap my head around the ideas being taught. Great job professor.
@MusicalMartha78 жыл бұрын
Incredible ! Thank you so much Dr. Chris Tisdell by far the best lesson on youtube. You save my semester ! :)
@amirmeysami78689 жыл бұрын
one hour and a half remaining to my differential equations exam, this helped a lot!! Beautifully done!
@gautamgautamkrishna7 жыл бұрын
Amir Meysami i have little more(5 hrs)
@non52703 жыл бұрын
@@gautamgautamkrishna i have more than this ( 1 and half a day)
@AndyJohnD100111 жыл бұрын
people like you make Maths easy clear, inspiring, encouraging & enjoyable thanks very much
@ShimmerArc11 жыл бұрын
After 2 years stumbling about in my physics course you made everything clear in less than an hour. So that's what Fourier Series and Separation of Variables is all about! Blimey.. and there I was, memorizing everything without a clue of what's going on! THANK YOU! :)
@mikesteele593511 жыл бұрын
Thanks Chris. This is beautifully done. I'll recommend it to my students.
@2tone2g9 жыл бұрын
Wow, if you were my professor I wouldn't be struggling at all. I only wish I had discovered your videos sooner. Thank you!
@jrippee058 жыл бұрын
Dr. T, you just saved me in my mathematical modeling course. I finally get this. Thank you!
@TheSunshineRequiem8 жыл бұрын
+James R out of curiosity, you didn't take differential equations before ur modeling course?
@shoomyjeddah7 жыл бұрын
you're a life savior. Thank you from Saudi Arabia
@kevinshants846310 жыл бұрын
Fantastic lecture as always! You explain concepts and calculations at a superior level. Thanks for all your videos Dr. Chris Tisdell
@kakakolaable12 жыл бұрын
actually . i dont know how to offer my thanks to you i think you the best you tube lecturer
@apesnerdo9212 жыл бұрын
Thanks a lot, The confusion occurred because I learnt to use "sin, cos" and "sinh,cosh". I understood now. Thanks for your videos, Really helpful. Keep up the good job!
@Matt0801198212 жыл бұрын
It definitely worth watching. Thanks Chris to covering all the details involve in this method of solving PDEs.
@reffzz8 жыл бұрын
I'm so glad I found this as I was stuck with an assignment for a class I did not attend. It was very similar to what you solved here but the initial condition was different. Thank you so much!
@jdstufu10 жыл бұрын
Thank you very much for your video lectures on Solving Heat and Wave Equations and your explanations on Method of Separation of Variables and Fourier Series. Both of your videos helped me with my Advance Math classes. More power sir!!!
@denisjohnson15918 жыл бұрын
You are the reason I made it through Fourier Series and BVP. Thank you so much.
@nnnlynnn12 жыл бұрын
AWESOME TEACHING!! u made maths much less torturous and in fact, i start to find it interesting!
@sinsbehindthescene520311 ай бұрын
you just saved my final SIR, Thank you from Windsor Canada
@DrChrisTisdell11 ай бұрын
Well done!
@haris5258 жыл бұрын
I wish Dr. Tisdell taught at our university - great lecture - we need more awesome professors who do this kind of explanation
@ahmed12op8 жыл бұрын
Dr. Chris, thank you from 1 to infinity ! .. Great explanation, wonderful presentation of the subject and a nice way of organizing the lecture.
@TheLeontheking2 жыл бұрын
Very helpful! One suggestion I would give is for expressions which contain multiple elements, use parentheses after sin and cos - one might otherwise think that the x is outside of the sin,cos function's arguments.
@kristoferdressler813410 жыл бұрын
Excellent, excellent. This is the best I've seen, even after 6 years of grad school.
@DrChrisTisdell9 жыл бұрын
Wow - that is quite a comment. Thank you!
@joshualee90828 жыл бұрын
loving these lectures everytime. thanks on behalf of all student viewers, you sir, make math a bit better to learn.
@laicao392011 жыл бұрын
wow i have a test tomorrow and didnt know anything until i watched this lecture. thank you so much :) ill let you know what i have on my test
@DrChrisTisdell12 жыл бұрын
Yes, you are correct - that's the general form for complex roots a + ib, However the real part of the roots at 20:30 are zero (ie, a = 0) and hence the exponential part you mention is just zero everywhere.
@michaelguo63497 жыл бұрын
Thank you. This video saved my ECE205 final
@Jellysugarcandy11 жыл бұрын
I'm really amazed by how u respect ur students .. and amazed more by ur gift of amazing explanation .. u really made me taste the fun math again after i'd forgotten how fun it was :) thnx alot :)
@MrPSPreview8 жыл бұрын
This just saved my life. Thank you so much for the clear explanation
@suliman90588 жыл бұрын
my college needs drs like you you are very helpful
@DrChrisTisdell12 жыл бұрын
Not yet, but it's a good idea. In fact, I will teach another course on PDE in 2013 so I plan to make more videos about the heat kernel (and lots of the PDE things) then!
@timurtavman833610 жыл бұрын
This video helped me a lot for understanding this subject.Thanks a lot
@mkuseligobo55856 жыл бұрын
Anyone noticed a bit of an error in the equation T(t)=...., a negative sign is missing in the exponent, otherwise the video is extremely outstanding thank you very much Dr.
@_brown_6 жыл бұрын
You need more subscribers! You might just save my PDE Course this semester.
@kvmuralidharankv91727 жыл бұрын
A VERY CLEAR PRESENTATION, HIGHLY INFORMATIVE
@DrChrisTisdell12 жыл бұрын
Counting down to the test! I have visited NUS once and NTU quite a few times. I really enjoy Singapore every time I visit.
@MrAndy1999010 жыл бұрын
i'm a stuent from Politecnico of Milan (italy). Thank you very much, very good professor, much better than mine :)
@jeanpaulnavier672610 жыл бұрын
chi hai avuto? ahah :)
@MrAndy1999010 жыл бұрын
Ho avuto Pavani e Colombo
@jeanpaulnavier672610 жыл бұрын
MrAndy19990 be', la pavani ho sentito sia brava...no?
@MrAndy1999010 жыл бұрын
ahahaha spero tu stia scherzando! Comunque mi correggo, ho avuto Gazzola e non Colombo.
@jeanpaulnavier672610 жыл бұрын
nono non scherzo,come mai questo commento?gazzola è stronzo a quanto dicono ahah
@hrahul167 жыл бұрын
Very very in-depth explanation...thank you very much..
@aliwatfa69519 жыл бұрын
You're so amazing!!! A big thank you to Dr. Chris :)
@Vishu11717 жыл бұрын
Hello Dr. Chris. You have given really nice explanation. But I have one doubt that you have mentioned that for r
@justsimonurban7 жыл бұрын
Great video. A side note on a bar of length pi: could you not take a bar and bend it until it forms a circle with radius 1 then the bar would be length 2*pi. All that you need to do now is cut the bar in half to have a bar of length pi (in fact 2 bars of length pi)
@jeetbanerjee95518 жыл бұрын
Hello Prof. Chris. First of all, thank you so much for these wonderful, clearly understandable PDE videos. If possible, could you please upload the video for the solution of [2-D] heat equation by the method of separation of variables? However, if your video on this topic is available online, please send me that link. Thank you in advance.
@ddPing1311 жыл бұрын
You don't even know what a help this was to me! Thank you very much. Quick question, may be a dumb question, though for you or anyone that may know but why is it n^2 wen subbing in for the gamma for the Ce^4(gamma)T?
@MegaTRIANGULUM6 жыл бұрын
Can't like this video twice. Thank you so much!
@Saucepv8973 жыл бұрын
very motivated professor. very energetic
@SHONSL9 жыл бұрын
Comprehensive example incorporating broad material.
@jeanpaulnavier672610 жыл бұрын
WOW, excellent teaching right here!!
@gopeswarnamasudra88959 жыл бұрын
thank you sir ,this lecture helped me a lot..very well presented
@laurahernandez65959 жыл бұрын
THANK YOU SOOO MUCH!!!!!! MY NOTES MAKE A LOT MORE SENSE!!!!!!!!!
@PrasannaKumar-zx7gr4 жыл бұрын
Very clear explanation, thank you!!
@bohaswa16 жыл бұрын
Thank you very much, Greetings From Kuwait
@DrChrisTisdell11 жыл бұрын
Hi. In this case, \gamma is negative and the roots of the associated characteristic equation are (purely) imaginary, ie \pm i \sqrt{-\gamma}, however, we drop the \pm i in the solution was we are interested in real-valued solutions. Since \gamma is negative, -\gamma is positive and so \sqrt{-gamma} will make sense. Sometimes people use a "squared" as the separation constant to simplify the notion.
@davidzorroyang6 жыл бұрын
Great teaching material! Thank you so much sir!
@romanel.andressa9 жыл бұрын
Awesome explanation! ps. your accent is VERY CUTE!! Greetings from Brazil!!
@matthewjames75137 жыл бұрын
Great video Chris! I noticed you found the solution by assuming u has the form u = X(x) T(t). Yet we know the general solution to the W.E. is u = p(x-ct) + q(x+ct) from d'Alembert's formula. Does this mean that the solution in this video must also coincidentally have the form u = p(x-ct) + q(x+ct)? Lastly, isn't using this separation of variables technique going to only provide you with a subset of solutions from the general solution? (since there could be solutions that fall outside the form of u = X(x) T(t) )? Thanks again for the great video :)
@dmceye13 жыл бұрын
Great presentation. I was wondering if you could also do one for heat equation with a source term and double neumann homogeneous boundary conditions. Thank you.
@rohanthawal97037 жыл бұрын
Fantastic teaching sir!! thanks a lot for uploading the video
@Kavalyeri8 жыл бұрын
you are a legend,sir !
@DrChrisTisdell13 жыл бұрын
@Reyder93 The important point is that the constant must be positive. If we write it as \alpha^2 (with \alpha > 0) then it makes the notation and calculations simpler when solving.
@Andrew-ht5by10 жыл бұрын
thank you very much. It is very straightforward.
@hasseng20006 жыл бұрын
Thank you so much Dr. Chris Tisdell, I have question? if the boundary conditions u(x,0)=0=ux(0,t) and initial condition u(1,t)=q(x) how can we solve this problem?
@SeparataCosmigonon6 жыл бұрын
Amazing! Thank you so much. From Argentina.
@DrChrisTisdell12 жыл бұрын
My pleasure - thanks for the comment. Hope you also find my new ebook of some use!
@DrChrisTisdell12 жыл бұрын
Hi, since no-one has answered, there are two ways to approach this problem: 1) via the substitution u = 1/v; 2) separate the variables to get dv / v(c + bv)= -m dt and then integrate both sides. (You will need something like partial fractions on the left.)
@MyThundermuffin8 жыл бұрын
Hi Chris, do you have any videos on the Heat Equation with inhomogeneous boundary conditions ?
@anaslahrichi5 жыл бұрын
Amazing lecture. Thanks a lot !
@kittycat321online6 жыл бұрын
So well explained thank you very much.
@jasmine27c11 жыл бұрын
This is so helpful, thank you very much!! Great lecturer :)
@davidcordero63210 жыл бұрын
Great Lecture!
@LG-tu5cb11 жыл бұрын
Hey Chris, thanks for the vid! In your response, what is\pm and \?
@alimekernef80809 жыл бұрын
Thank you ser, you are the best teacher thank you again
@MrAndy1999010 жыл бұрын
My teacher says that we can say gamma
@ahmedyoussef876510 жыл бұрын
thanks , greetings from Egypt :)
@ImGonnaShout200010 жыл бұрын
Here is a MatLab plot with the solution for a rod with arbitrary fixed temperatures in both ends and initial temperature f(x)=1 between pi/2 and 3pi/2 plus (U_2-U_1)x/pi + U_1 between 0 and pi. Variable c is the speed of the whole thing. Set it to 0.03 to see in very slow motion. Enjoy!: ---------------------------------- clear; close all; clc x=linspace(-pi,pi,100); n=1; c=0.3; figure akse=x*0; U_1=2; U_2=-2; for t=0:2*pi/99:16*pi i=0; y=(U_2-U_1)*x/pi+U_1; for i=1:50 y=y+(2/(pi*i))*(cos(pi*i/4)**-cos(3*pi*i/4)+(U_2-U_1)-*-((-1)^(i))-U_1*(1-(-1)^i))*sin(i*x)*exp(-((c*i)^2)*t); end plot(x,y,x,akse); axis([0,pi,-5,5]); M(n)=getframe; n=n+1; end movie(M,1,10); -----------------------------
@DrChrisTisdell9 жыл бұрын
Awesome! Thanks.
@JustCheckingMusic8 жыл бұрын
For case II at 29:55 my proff uses the form of: X(x) = A cosh (Lx) + Bsinh(Lx) and gets a trivial solution for sigma < 0 instead of sigma >0. Does this make any difference? I prefer your method over his, since yours is way better explained here ;).
@keatonmcsweeney77728 жыл бұрын
incredibly helpful lecture, thank you so much
@Jairsilvav10 жыл бұрын
Thanks, greetings from Ecuador.
@DrChrisTisdell9 жыл бұрын
And my best wishes go to Ecuador!
@mathewgeorge36737 жыл бұрын
Hi Dr. Tisdell, I have a question about your solution to one of the ODEs. For the purpose of this question, I will use the convention: l = lambda and g = gamma. When g < 0 --> l^2 = -g --> l = +- sqrt(g) i Why did you add a negative inside the sqrt sign? Thanks.
@mathewgeorge36737 жыл бұрын
Timestamp to consider: 19:38
@jamesjoetomo5 жыл бұрын
Incredible lecture, helped me a lot *clapping*
@Theshikshik7 жыл бұрын
Bless this man
@ozorobi9 жыл бұрын
Thank You Sir, this helped a lot
@nnnlynnn12 жыл бұрын
Thanks for the great teaching! By the way, do you have any teaching video on heat kernel? :D My mind is totally switched off reading the book =(
@liquidstl13 жыл бұрын
Great Presentation. Thank you!
@DrChrisTisdell12 жыл бұрын
Excellent! Good luck!
@annecarlill43178 жыл бұрын
Thanks. This has really helped.
@ArjunSKV7 жыл бұрын
Nice presentation...
@victorjoseph535710 жыл бұрын
r
@CrushOfSiel8 жыл бұрын
If the bar was cylindrical, kind of how you drew it, would you solve the equation in cylindrical coordinates? How you're solving it you're assuming the problem is more rectangular, correct?
@DubsteadyMusic8 жыл бұрын
its assuming only x dependence. if he solved it in cylindrical hed assume only z dependence, radial and theta components would go away and the soln would be exactly the same
@Sancarn11 жыл бұрын
I agree totally with shimmerArc. Thanks so much!
@TehJozze Жыл бұрын
You can only make such division only if the X(x) and T(t) are non-zero, or if the ratios with their respective derivatives are a trivial singularity.
@DrChrisTisdell Жыл бұрын
Yes, and who would want to find a trivial solution?
@DrChrisTisdell12 жыл бұрын
You are very welcome.
@mioumitsou12 жыл бұрын
so i have a question, if the separation constant was negative instead of positive (i have seen it in many texts) how would this affect the procedure from then on?
@DrChrisTisdell12 жыл бұрын
That is great news! Thanks for the feedback.
@miamarukot50098 жыл бұрын
I'm looking for examples for inhomogeneous boundary conditions for the heat equation. Also, this example is explicitly the Dirichlet boundary condition, how about the Neumann boundary condition?
@denisjohnson15918 жыл бұрын
+Mia Marukot If you check Dr. Tisdell's page has an example under "Inhomogeneous heat equation: Insulated ends". Hope that helped.
@DoggoWillink12 жыл бұрын
@DrChrisTisdell I can't believe I didn't see that. So all you have to do is factor it into a product and then you can divide to separate it.. thank you.
@oskarvedin51979 жыл бұрын
Can the separation constant be complex?
@slad8211 жыл бұрын
on page 9 @ 20:20, in the third case, i.e when gama