If you like math and clicking sounds check out 3Blue1Browns latest three videos.
@rcb39215 жыл бұрын
I'm really struggling for some appropriate onomatopoeia. Splock? Maybe going to SplockaSplockaSplocka when it gets fast?
@furiousxXxpyro5 жыл бұрын
Your profile picture does with me too
@corncolonel91715 жыл бұрын
@@f_f_f_8142 3Blue1Brown is amazing
@JivanPal5 жыл бұрын
@@rcb3921, how about "clack"?
@rosiefay7283 Жыл бұрын
I look forward to a follow-up showcasing Smith and Goodman-Strauss's aperiodic tile!
@reversev9778 Жыл бұрын
I really hope they do it
@wizardinthenorthable Жыл бұрын
Came here to add my excitement. I do hope it is something they make a video on, I got sent the news by my brother and was surprised I hadn't heard from numberphile about it.
@erizwidodo9926 Жыл бұрын
Yes, I can't wait for that too!
@eatingsfun Жыл бұрын
Yeeepppp
@maiconfaria Жыл бұрын
Hold my beer!
@ZerofeverOfficial5 жыл бұрын
Can we just have a moment for how tight the animations on this channel are?
@squeakybunny27765 жыл бұрын
Number 4 has a bit of overlap which slightly bothered me if im really honest and the fifth heesch number animation is incorrect... Still satisfying tho
@andioop66865 жыл бұрын
Omg ZeroFever I didn't expect to see you here! *glad you also like numberphile heheheh*
@ZerofeverOfficial5 жыл бұрын
@@andioop6686 OMG whats up Rocky!!! and yeah, Im addicted to math videos :D
@xl0005 жыл бұрын
If you look closely, it wasn't that tight. But I doubt the animators will use some real animation software like SideFx Houdini to make the animations so that it never overlaps
@TIMExBANDIT5 жыл бұрын
Heesch number shirts/hoodies would be hella cool
@nzlawless5 жыл бұрын
that editing looks like a load of work, super well done and I would never have understood this without it. Massive props!
@terrahyde2175 жыл бұрын
Casey Mann was my undergraduate advisor in mathematics 6 years ago. He's a really cool dude. And he does a LOT of work in tiling theory that turns out to be really interesting.
@RC_Engineering Жыл бұрын
They recently discovered a 13 sided shape that infinitely tiles the plane without repeating! I can't wait to see the video on it
@RC_Engineering Жыл бұрын
Still waiting!!
@RC_Engineering Жыл бұрын
We got it!!
@Hyperdrive Жыл бұрын
We got it!!
@pickachu4635 жыл бұрын
Make a 10 hour version of tiling with those sweet sound effects
@TruthNerds5 жыл бұрын
ASMR infinite aperiodic tiling…
@alveolate5 жыл бұрын
go full production value and tile them with actual wooden/plastic blocks too.
@nowonmetube5 жыл бұрын
Why does this make me laugh so bad 😂
@markiyanhapyak3495 жыл бұрын
Ha • hA. 👌🏻 😅 👌🏻
@Triantalex Жыл бұрын
??
@JJ-kl7eq5 жыл бұрын
Wow, this explains so much about The Dark Knight. Heesch Ledger was one crazy, unbalanced tile.
@alephnull40445 жыл бұрын
These are so bad lol
@poznyakpoznyak5 жыл бұрын
He was one c(r)azy man
@danfg72155 жыл бұрын
too soon!
@njdevilsforlifewoohoo55335 жыл бұрын
I hate puns. None are funny.
@pluto84045 жыл бұрын
Jeesch. These puns dont fit
@matthewb2365 Жыл бұрын
Last month, there was a new tile discovered that tiles aperiodically, and doesn't require a discontiguous tile. Can't wait for the upcoming video about it!
@helpme65995 жыл бұрын
Nice animations. Really helped illustrate the problem.
@docdaneeka34245 жыл бұрын
Nice illustrations. Really helped animate the problem.
@jiminapemode58735 жыл бұрын
Nice visual sequence, really helped draw the problem.
@letMeSayThatInIrish5 жыл бұрын
Nice problems. Really helped sequence the illustrations.
@jackofallmasterofnone80245 жыл бұрын
Nice help. Really illustrated the sequence of problem.
@alephnull40445 жыл бұрын
Nice comments. Really helped demonstrate the gratitude of the viewers.
@BeCurieUs5 жыл бұрын
The cheat is so pretty! I love this kinda of mathematics at play :D
@tgwnn5 жыл бұрын
The opposite of the Parker Square, if you will.
@andrerenault Жыл бұрын
Parker-Taylor Tiling
@Triantalex Жыл бұрын
??
@SendyTheEndless5 жыл бұрын
Those Heesch Shape Tiling sequences are extremely satisfying. Please, an entire channel dedicated to them!
@TehNewV5 жыл бұрын
I love the look of the imaginary 4622 heesch tile. feels almost genuine in a way.
@bgoggin885 жыл бұрын
Cheat or not, Taylor's tiling is awesome!
@anmax5 жыл бұрын
really thinking outside the box
@Triantalex Жыл бұрын
??
@nolancoughlan4848 Жыл бұрын
A solution to the Einstein problem has been found a few days ago, pending peer review
@ShankarSivarajan Жыл бұрын
It has been found regardless of what "peers" think.
@dapcuber7225 Жыл бұрын
could you link to the paper/proof?
@Pomodorosan Жыл бұрын
Oh yeah I saw that one first some time ago, then was surprised to see that odd tile shown in this video from 4 years ago. I can't find it anymore though.
@victorcossio Жыл бұрын
@@dapcuber7225in recent videos in this Channel you find the video about it and the information about that paper
@ubahfly5409 Жыл бұрын
@@ShankarSivarajanWait why the contempt for peer review? Is the "establishment" not taking your grand theory seriously, Eric Whine-Stein? Lol
@MrBrain45 жыл бұрын
Love content about tilings! This is the area of mathematics I have done the most research in, and there currently seems to be very little overall information about tilings on KZbin.
@ethanjensen6615 жыл бұрын
That's so beautiful. I like the sound of the tiles being placed together
@yc1094 Жыл бұрын
Very cool to go back and watch this now out of date video!
@joshua8483 Жыл бұрын
And now we finally have a single tile that periodically tile!
@jeremysimmonds52135 жыл бұрын
the animations are amazing please keep it up!
@TheWhitePianoKeyProductions5 жыл бұрын
Yellow is touching the red at the top at 3:50 or is that okay?
@ShayBowskill5 жыл бұрын
It's not okay. That yellow tile is supposed to be green. Time to riot!
@TheWhitePianoKeyProductions5 жыл бұрын
@@ShayBowskill but even then it doesn't work though? or it's heesch number 5, so the red doesn't need to close it totally?
@Party_Magician5 жыл бұрын
@@TheWhitePianoKeyProductions The Yellow is supposed to be a green, not the red. The red is in the right place, the whole shape is still enclosed in red
@Mazsi12015 жыл бұрын
@@TheWhitePianoKeyProductions it does have to be closed, i think if you changed the problematic tile to green then you could close the red boundary by adding one extra red tile where the newly green tile is touching the outside (by the looks of it it is possible to add an extra tile there, i think it would fit)
@AdrenalineL1fe5 жыл бұрын
Parker tile
@DelDelta_ Жыл бұрын
To any new viewers, you may be happy to know that an 'ein stein' has been found! There is a monotile that covers the plane, aperiodicly.
@OlbaidFractalium5 жыл бұрын
The pattern made by mathematics is really beautiful.
@alephnull40445 жыл бұрын
THE pattern made by mathematics. I'd like to see that.
@diegomo1413 Жыл бұрын
Eyy, it’s 2023 and they found a family of Einstein tiles!
@poketopa1234 Жыл бұрын
Who would win: Centuries of the world’s smartest mathematicians VS a funny looking hat
@walkingwriter43255 жыл бұрын
Perhaps a dinosaur shape might work. You know, a rep-tile.
I think a child-shaped tile would work better. You know, an infant-tile.
@super_77105 жыл бұрын
you guys lack (s)tyle
@angelmendez-rivera3515 жыл бұрын
What a wholesome thread.
@Monkey-l8s5 жыл бұрын
Ringo Garvin *pun* ny?
@xenontesla1225 жыл бұрын
I love that boxy acrylic fractal sculpture in the background.
@pruusnhanna44225 жыл бұрын
MC Escher would love this.
@mudmug15 жыл бұрын
Escher and Penrose inspired each other
@non-inertialobserver9465 жыл бұрын
How do they find those complicated tiles, is it some complex math or just trying different shapes?
@ge27195 жыл бұрын
there are methods of how to create shapes the tesselate perfectly. i imagine from the way they are talking about it there may not be say a specific way of finding a shape with specific hesch numbers.
@StefanReich5 жыл бұрын
It looks like a deliberate construction really (the last one anyway)
@logisthenewlinear5 жыл бұрын
Graeme Evans is exactly right. When it comes to shapes with specific Heesch numbers, we don’t know of any general method.
@Pete-Prolly5 жыл бұрын
@@logisthenewlinear I dig your style! 😎 So "log," if I may call you that for short, are you "common" or "natural?"🍸🤔 (I sound like a perv 🤣 and I don't drink martinis, but I had to complete the cliché.)
@unflexian2 ай бұрын
computers mostly, the complex math comes when you want to take the jump from "this tile keeps tiling correctly in my program for as long as I've kept my computer running" to "this tile will never stop tiling ever ever never ever".
@SaMadden995 жыл бұрын
Killer animations man. It really brings the beauty of math to the forefront
@blaholtzen5 жыл бұрын
i really love the animation in this one, and particualrly the litte tile sound, very pleasant
@dudewaldo45 жыл бұрын
Great animations!!! Really really enlightening. I wish you had showed why the penrose tiling was NOT periodic through the same illustration you did for the squares!
@LeoStaley5 жыл бұрын
This is what I come to this channel for.
@xenontesla122 Жыл бұрын
MATH NEWS!: An ein-stein tile has been found! “David Smith, Joseph Samuel Myers, Craig S. Kaplan, and Chaim Goodman-Strauss have produced a single shape which tiles the plane, and can’t be arranged to have translational symmetry.” - The Aperiodical
@TheMexicanPlatypus5 жыл бұрын
I love the animations in this video! Geometry videos are always great because they're simple to visualize in video form. One of my favorite Numberphile videos :)
@nicholaspatrick40925 жыл бұрын
At 3:46, a green piece at the top is miscolored yellow. The yellow piece is not touching the orange piece and is touching the red piece.
@edenli64214 жыл бұрын
Give them a break
@alan2here5 жыл бұрын
A bit of a hack but cut slots in the islands and tabs that jut out of some connecting bridge like pieces that with a bit for force slot in firmly at 90 degrees, you'll find wood/perspex has a bit of give. Make sure the slots and tabs account for the width of the laser beam (or drill bit).
@dhoyt9025 жыл бұрын
Brady Haran - the depth and breadth of your collection makes us all feel like Newton standing at the shores of Truth. You are the crown jewel of online inquisitiveness.
@llegaremosalasestrellas32455 жыл бұрын
I love your videos. They always show curious and interesting math problems. Today topic was really cool.
@grivar5 жыл бұрын
8:05 "Here in the Soviet Union" You've invented time travel and haven't made a video about it yet???
@Cashman91115 жыл бұрын
he made it in an alternate universe
@dreska2555 жыл бұрын
He did, in the future.
@DackxJaniels5 жыл бұрын
At the time of the event it was the USSR
@shruggzdastr8-facedclown5 жыл бұрын
Did we just have a Mandella Effect moment in this here video?!?!
@blindleader425 жыл бұрын
Nothing to see here. Move on. Actually, everything to SEE here. There's no mistake. It's a video. The image is integral to the statement.
@111giodude5 жыл бұрын
Did Joan Taylor spend a summer in Santorini,Greece and get inspired? The example of a non-connected tile really reminded me of the island's shape!
@nickkei28385 жыл бұрын
Socolar-Taylor tiling is what Parker square tried to achieve. It went outside of the rule book, some people may call it cheating, but succeeded.
@WilliamLeeSims5 жыл бұрын
Those animations are so on point today. Somebody spent a lot of time on those!
@enderwiggins82485 жыл бұрын
What a fun new puzzle to do during English class
@jtknight4647 Жыл бұрын
I’m a contractor and found this very intriguing. Makes me think of all the Ogee patterns; are these shapes also considered Heech numbers? Also puzzles must also be part of this classification of shape/numbers?
@cainmartin41315 жыл бұрын
After watching this video, I managed to design my own tile with a Heesch Number of 1. It's based on a tetris piece with some semi circular tabs. It makes me think it must be easy to design new ones which work for the lower existing Heesch Numbers.
@edmundharriss22885 жыл бұрын
It is a lot of fun to play with. Casey Mann's research looked as polyominoes as well as these polyhexes.
@glutinousmaximus5 жыл бұрын
Euler "Angels and Devils" and Penrose both did a lot of pleasing work in this area.
@ln145175 жыл бұрын
These videos are always so fascinating
@criskity3 жыл бұрын
Heesch 6 was recently found.
@rens1030 Жыл бұрын
Thank you and kind regards from Heesch, the Netherlands
@andrewkiminhwan5 жыл бұрын
Tiling is my favorite subfield of mathematics, i used to be absolutely obsessed with patterns, islamic tiling, etc.
@DeadCityJxro5 жыл бұрын
My only complaint is that these video's are too far between each other!? Did I say that right? My favorite channel!!
@themobiusfunction3 жыл бұрын
NOTE : A shape with heesch number 6 was discovered in 2020.
@tutoringwestern49705 жыл бұрын
I like the numberphile videos that has interesting conjectures.
@anselmschueler5 жыл бұрын
*have
@borismize87395 жыл бұрын
I am a simple man. I get a Numberphile new video notification, I click it.
@pawebielinski4903 Жыл бұрын
6 has been found back in 2020!
@Thomasikzelf Жыл бұрын
Someone just discovered an aperiodic monotile, see: An aperiodic monotile David Smith, Joseph Samuel Myers, Craig S. Kaplan, and Chaim Goodman-Strauss, 2023. Note that this tile must still be flipped for it to work
@deboogs5 жыл бұрын
Great episode. I have no idea how you could go about proving something like this.
@ferretyluv Жыл бұрын
According to David Smith, you just doodle shapes, cut them out with paper, and then just put them together.
@user-xd1wl2cq5v5 жыл бұрын
that's a lot of tiles yeesch
@diabl2master5 жыл бұрын
*heesch
@alephnull40445 жыл бұрын
@@diabl2master r/weesch
@diabl2master5 жыл бұрын
@@alephnull4044 I got it
@alephnull40445 жыл бұрын
@@diabl2master but then why spell out the joke
@DeadCityJxro5 жыл бұрын
This video is amazing after smoking HashHeesch? Sorry..
@happy_labs5 жыл бұрын
Awesome animations! Must have been tricky to get some of these right.
@Ometecuhtli5 жыл бұрын
And the sounds! Give me more of those sounds!
@raymondstheawesome5 жыл бұрын
obligatory "parker tile" joke for the cheating solution to the ein stein problem
@zimi58815 жыл бұрын
I wonder how far we can get with this Parker square thing. Maybe in 200 years it will be legit idiom.
@whatisthis28095 жыл бұрын
@@zimi5881 what does idiom mean?
@fortidogi86204 жыл бұрын
@@whatisthis2809 a phrase or saying that has such a widespread meaning that you can use it and your audience will understand what you mean intuitively. for example, "needle in a haystack" for a difficult task.
@whatisthis28094 жыл бұрын
@@fortidogi8620 Oh, okay thank you! don't remember ever posting this but hey, i know what it means now lol
@Visocacas5 жыл бұрын
I was expecting this video to blow my mind with Heesch numbers for tessellating 3D solids, or n-dimensional solids. Still super cool!
@eryqeryq Жыл бұрын
Update: the Einstein problem has just been solved for a connected tile! :)
@FelipeHoenen Жыл бұрын
time to do a follow-up video about the hat, the turtle and the chiral aperiodic tiles!
@rickyardo2944 Жыл бұрын
Be nice to see an episode on the the recent "Smith’s hat and turtle" tile
@BenjaminAster Жыл бұрын
Just wait a few more weeks, they will upload a video about that!
@dimkadimon3 жыл бұрын
A tile with Heesch number 6 has been found recently.
@IllPropaganda5 жыл бұрын
I always garner insight watching your uploads!
@AnthonyDavid595 жыл бұрын
Great video to follow. My 4 year-old grandson chose to watch this with me as he liked the colours. When the question came up about the Heesch number of a circle he called it. (He might have just called the shape zero :D )
@SendyTheEndless Жыл бұрын
3:50 I know this is 4 years too late but yellow is touching red at the top there! Was that a mistake? I imagine if you turned the touching red tile green, and then slotted a red one into that gap above it so it pertrudes outwards, that was the intended solution. EDIT: Also, you can probably guess why this video is trending again : )
@eac-ox2ly5 жыл бұрын
Damn, these patterns are so fascinating
@TruthNerds5 жыл бұрын
I should be commenting on the amazing talk and outstanding animations. Yet here I am, commenting on your little piece of advertisement: I am not easily scared, but when I first heard the story of the Dyatlov pass incident - I left the light on that night…
@alan2here5 жыл бұрын
I've got this game on IOS, it's good. I think there mostly/all endlessly heesh though and tile like the rectangle. The goal is to use the fewest in the first two rings.
@Axacqk5 жыл бұрын
Can this be used to design dendrimer molecules that won't grow indefinitely?
@user-qf6yt3id3w5 жыл бұрын
I wonder if something similar could be used to design custom virus capsids. Only issue is that Heesch numbers describe 2D tilings and dendrimers and capsids are 3D.
@karl-leopoldkontrus65445 жыл бұрын
I personally believe, that you will find some Clusters in Nature with higher heesh numbers (some konfigurations of SiO2 seem to have heesh numbers over 1000 or so)
@user-qf6yt3id3w5 жыл бұрын
@@karl-leopoldkontrus6544 Interesting. I'll look up SiO2 and Heesch numbers. I was actually thinking of proteins - I bet you'd find them with any Heesch number you wanted.
@karl-leopoldkontrus65445 жыл бұрын
Proteins would be very interesting, there are surely "numbers" which are similar to heesh numbers, but they have to be adapted somehow... a differnt repelling force for N - C and for C - C or hydrogen bonds , i think that some pc programs which try to predict forms of preoteins, use similar techniques for stacking like in the video (sry i am not a native speaker)
@4ltrz5555 жыл бұрын
What about 3D tiles?
@fittony5 жыл бұрын
cube should be infinite, but yes irregular 3D would be interesting.
@DeadCityJxro5 жыл бұрын
Bruh! 4D!?!?!?!
@axelasdf5 жыл бұрын
Scutoids
@Soken505 жыл бұрын
let's find a general rule to find 2D tiles for each Heesch (try and say that outloud a few times) number and worry about higher dimensions later yes ?
@anononomous5 жыл бұрын
Can: Worms 🙂
@roccoleader2793 жыл бұрын
I think there is heesh number 6, i read it somewhere and am in a discord server about finding heesh numbers
@PINKALIMBA Жыл бұрын
Aperiodic monotile / Einstein tile is found! And there are 2 shapes - the hat & the turtle.
@johnkobilarcik44495 жыл бұрын
Personally, I think that last result is genius. I love it.
@dahemac5 жыл бұрын
In Adobe Illustrator the discontiguous (unconnected) shape would be called “compound.” Same as a doughnut with a hole except the hole does not overlap the other part.
@charlottedarroch5 жыл бұрын
Does taking pieces of the Penrose tiling give larger Heesch numbers? In particular, if you take several tiles of the Penrose tiling which form a connected piece and call that piece your single tile, do you get very far with that? There are obviously infinitely many such pieces to be chosen, so it's my intuition that some of them would be relatively good tiles.
@tghuffine62775 жыл бұрын
Paused @ 4:28 to say that this shape reminds me of that British Man who says that all numbers are shapes and colors; and quoted Pi to the 10,000th decimal place.
@Axman65 жыл бұрын
Yeah if you could make those tilings as t-shirts, that'd be great - the tiling with Heesch number of 5 looks fantastic.
@pokestep5 жыл бұрын
This guy is adorable, more of him please
@kmktruthserum93285 жыл бұрын
its funny that a lot of these videos you do were just things i used to do in grade school for fun when a teach was lecturing
@KirbyTheKirb5 жыл бұрын
I´m really curious about how they found these tiles. Especially the tile with the Heesch number 5.
@altejoh5 жыл бұрын
Parker square tiling. Kind of a cheat, but close enough to an answer.
@FredRandall015 жыл бұрын
They gave it a go.
@petercarioscia91895 жыл бұрын
MC Escher and and David Fathauer have been making these tessilations for decades. It makes some fantastic artwork, and it's easy to make a basic tessilating tile shape with a simple visual formula...it might not be a masterpiece like Eschers work, but it will work. Take a shape, like a rectangle, a take a semicircle notch out of one side, the repeat that shape with a mirror transformation on the opposite side. So the semicircle notch on the top rightside, would be a semicircle bulge bottom leftside. Then make a triangle notch on the top line, and repeat as a triangle bulge on the bottom line. Simple tessilating tile. Edit: use more complex shapes and transformations and you can make a tessilating swan or turtle shape.
@KenWangpiano5 жыл бұрын
Dude I just saw you on some of lowko's videos...
@KatarzynaMatylla Жыл бұрын
Do a part 2 about the einstein hat! :)
@StonedWidowOnDoom5 жыл бұрын
6:24 No wonder a person from Tasmania comes up with this solution. Sticking to a tile you are separated from but can not go without it anywhere. I like :D
@dropkickedmurphy64632 жыл бұрын
Since this video was made, there is a new WR holder of 6. The tiling was made by Bojan Bašić.
@swfreak2583 жыл бұрын
Update: There now is a tile with Heesch number 6
@InvntdXNEWROMAN5 жыл бұрын
Killer animation for this video.
@ThAlEdison5 жыл бұрын
Re: laser cutting. It depends on how many tiles overlap the same point. If you can find a set of tiles that are analogous to the single tile then you could theoretically make 3D models where the discontiguous pieces are held by contiguous tiles used as a base. If the base is clear, you should be able to see the aperiodic tiling.
@edmundharriss22885 жыл бұрын
Yes there are ways to make them. Though making the bases of neighbouring tiles not intersect might be tricky. Also this pulls the problem into 3d (and it is a 2d tile). These are as much aesthetic concerns as anything else.
@ThAlEdison5 жыл бұрын
@@edmundharriss2288 I can think of ways of dealing with intersection, but it becomes trickier and less nice looking the more tiles cover the same spot. And yes it's 100% exploiting 3D to cheat the tiles into existence. And it would likely require more than one type of cut, so while it's a single tile in a specific 2D slice that we're trying to visualize, it'll likely require multiple 3D models. So more cheating.
@Zarunias5 жыл бұрын
Do you have to cover the diagonals (is it sufficient that the edges are completely covered or do you need to completely cover the vertexes too)? In your square example it seems that you don't have to, but in the example for Heesch number 1 you covered it.
@oegunal5 жыл бұрын
Intuitively, the square "covers the vertices" if you consider that there are eight squares around the center square. The diagonally placed four squares cover the vertices. I'm just not sure what vertex would be considered formally "covered" or "not covered" in this case.
@BobStein5 жыл бұрын
Very observant. At 3:05 the tile on the left covers a vertex that it might not otherwise have to for the 1st layer.
@BobStein5 жыл бұрын
@@oegunal You might say (formally) that a vertex is not covered if there are any outside points infinitesimally close to it.
@diabl2master5 жыл бұрын
@@BobStein In the squares case *and* the teardrops case, there are outside points infinitesimally close to "vertices"
@oegunal5 жыл бұрын
@@BobStein yes, this seems a reasonable definition. The way I was thinking of it was: if you can draw a line segment of any non-zero length anchored at a vertex (or any point on the circumference) that does not intersect with any outer tile, then the point is not covered. Which is basically the same thing.
@m1m1snake5 жыл бұрын
Damn, that Heesch number 5 is amazing, makes for some nice art.
@Fatabuna4 жыл бұрын
Heesch number for a square: infinity Heesch number for a square according to my local tiler: about two
@qcard765 жыл бұрын
On the tail end of an all night studying session for Neuroanatomy... much needed break for the brain!
@benjaminnewlon78655 жыл бұрын
Which is better, the clicks of the tiles in this video, or 3b1b's clacks in his sliding blocks video?
@cogoly5 жыл бұрын
I think there is an error in the animation for the Heesch number 5. In the top part a red tile touches a yellow tile. Shouldn't the red one be green?
@pietervannes44765 жыл бұрын
the yellow one should be green
@rednecktash5 жыл бұрын
7:32 it's just a hexagon with pieces removed and nested inside the nearby hexagons in a perfectly symmetric hexagon tiling