Hermite Differential Equation and Hermite Polynomials

  Рет қаралды 23,142

Faculty of Khan

Faculty of Khan

Күн бұрын

Пікірлер
@ErwinSchrodinger64
@ErwinSchrodinger64 3 жыл бұрын
Stationary harmonic oscillators... in terms of partial differential equations... Hermite polynomials will be involved. Anyone that's going to study Quantum Mechanics, Hermite polynomials will come into play when V(x)=harmonic oscillator or V(x,y,z... N)=N-dimensional harmonic oscillator. Thank you Faculty of Khan. My students will thank you soon. I will thank you when I teach Quantum Theory this fall.
@chiranjibimahapatra708
@chiranjibimahapatra708 2 жыл бұрын
Yo bro Im here for this reason ...QM
@of_discourse
@of_discourse 3 жыл бұрын
Derivative of the sum is the sum of derivatives is only generally true when the sum is finite, but I think you can do this for any Taylor series, assuming it converges in a neighborhood of that region.
@FacultyofKhan
@FacultyofKhan 3 жыл бұрын
Good catch, and thanks for clarifying! I'll put an edit in the description accordingly!
@vivekpanchal3338
@vivekpanchal3338 Жыл бұрын
For physicist Hermite polynomials, why we set a0 nd a1 diffrent for each order of Hermite polynomials? I am confused whether it is done for making the wave function normalised or there is any other reason?
@mohamedjahimti8618
@mohamedjahimti8618 3 жыл бұрын
Can you make videos on Generating Functions for Legendre, Bessel and Hermite Polynomials. It would be very helpful if you can do it ASAP
@holyshit922
@holyshit922 Жыл бұрын
Exponentital generating function for Hermite polynomials is easier to get starting from recurrence relation H_{n+1}(x)=2xH_{n}(x)-2nH_{n-1}(x) H_{0}(x) = 1 H_{1}(x) = 2x H_{n+2}(x)=2xH_{n+1}(x)-2(n+1)H_{n}(x) H_{0}(x) = 1 H_{1}(x) = 2x E(x,t) = sum(H_{n}(x)*t^n/n!,n=0..infinity) After some calculations you will get following initial value problem B''(t) + 2(t -x)B'(t)+2B(t)=0 B(0) = 1 B'(0) = 2x Particular solution to this equation is easier to guess after reduction to Riccati Reduction to Riccati y'' + p(x)y'+q(x)y = 0 y'' = - p(x)y' - q(x)y | :y y''/y = -p(x)*(y'/y) - q(x) | -(y'/y)^2 y''/y - (y'/y)^2 = -(y'/y)^2 - p(x)*(y'/y) - q(x) y''/y - y'*y'/y^2 = -(y'/y)^2 - p(x)*(y'/y) - q(x) (y''*y-y'*y')/y^2 = -(y'/y)^2 - p(x)*(y'/y) - q(x) (y'/y)' = -(y'/y)^2 - p(x)*(y'/y) - q(x) Let y'/y = z z' = -z^2 -p(x)z - q(x) y' = yz Reduction Riccati to Bernoulli assuming you somehow guessed particular solution Let z_{1} be the particular solution to Riccati equation z' = p(x)z^2 + q(x)z + r(x) (1) z_{1}' = p(x)z_{1}^2 + q(x)z_{1} + r(x) (2) Lets subtract eq no 2 from eq no 1 z' - z_{1}' = p(x)(z^2-z_{1}^2)+q(x)(z-z_{1}) z' - z_{1}' = p(x)(z - z_{1})(z + z_{1}) + q(x)(z-z_{1}) z' - z_{1}' = p(x)(z - z_{1})(z - z_{1} + 2z_{1}) + q(x)(z-z_{1}) z' - z_{1}' = p(x)(z - z_{1})(z - z_{1}) + 2z_{1}p(x)(z-z_{1}) + q(x)(z-z_{1}) z' - z_{1}' = p(x)(z - z_{1})^2 + (2z_{1}p(x) + q(x))(z-z_{1}) (z-z_{1})' - (2z_{1}p(x) + q(x))(z-z_{1}) = p(x)(z - z_{1})^2 w = z-z_{1} w' - (2z_{1}p(x) + q(x))w = p(x)w^2
@mehmoodsaleem6749
@mehmoodsaleem6749 2 жыл бұрын
Great Sir💗💗💗
@anaeem86
@anaeem86 2 жыл бұрын
Can u plz share as to which video editor u use
@cicerohitzschky8855
@cicerohitzschky8855 3 жыл бұрын
Excellent class, teacher! What software do you use to write on the screen?
@lichifang632
@lichifang632 3 жыл бұрын
Would you consider making a video on Mathieu function (differential equation)? Almost no video about that is available currently on youtube
@eulefranz944
@eulefranz944 3 жыл бұрын
That a good idea!
@anaeem86
@anaeem86 2 жыл бұрын
I am making videoes on that this week. Maybe u can check my channel up by then. Thanks
@anaeem86
@anaeem86 2 жыл бұрын
M planning to do hermite polynomial, airy's, laguerre, laplacian and mathieu....the whole shabang
@Ryze107
@Ryze107 3 жыл бұрын
Could you please explain where the ODE comes in the first place? How do you derive the ODE for the processes it is meant to describe?
@MathwithMing
@MathwithMing 3 жыл бұрын
He said in the beginning of the video: quantum mechanical harmonic oscillator. For details of the derivation, see: opentextbc.ca/universityphysicsv3openstax/chapter/the-quantum-harmonic-oscillator/ On the webpage above, search for keywords “time-independent Schrödinger equation”. Hope it helps.
@canyadigit6274
@canyadigit6274 3 жыл бұрын
New pfp nice
@morethanjustasloth5528
@morethanjustasloth5528 2 жыл бұрын
"This equation will really help us in quantum mechanics." Man I just wanna figure out what how to draw a line in GLSL.
@nitayweksler3051
@nitayweksler3051 2 жыл бұрын
nice vid, thanks!!!!
@manjuriroy9351
@manjuriroy9351 2 жыл бұрын
Thankyou sir❤️
@andreasatakan6183
@andreasatakan6183 2 жыл бұрын
King!
@방울이-j8o
@방울이-j8o 2 ай бұрын
He is Literally god
@cpmontanapromoblackheartta3886
@cpmontanapromoblackheartta3886 2 жыл бұрын
@seanziewonzie
@seanziewonzie 3 жыл бұрын
Pronounced "air meet" not "her might"
@ahkypc9171
@ahkypc9171 2 жыл бұрын
Great
@didierfavre2356
@didierfavre2356 3 жыл бұрын
It looks simple. ????????????????? Let's try.
@ricardoraymond9037
@ricardoraymond9037 3 жыл бұрын
Your subtitles are larger than your black board written characters. Very distracting......
@enriqueniemannconcha7267
@enriqueniemannconcha7267 3 жыл бұрын
Did you try turning them off??
@sidneynatzukajr6099
@sidneynatzukajr6099 3 жыл бұрын
first!!
@abublahinocuckbloho4539
@abublahinocuckbloho4539 2 жыл бұрын
mate you have a way with words, you make a mountain out of a mole hill. something that can be explained in a sentence, you take a paragraph. consider "instead of having an infinite series containing the sum of a bunch of polynomial terms" how about "instead of an infinite series" instead. you might want to put your script through grammarly to avoid a lot of unnecessary waffling like you are finding words to make sure you reach a word limit. there are a bunch of other examples in this video and every other fucken video you made
The most useful polynomials you have never heard of.
20:26
Michael Penn
Рет қаралды 23 М.
Introduction to Hermite Polynomials
6:14
Physics and Math Lectures
Рет қаралды 41 М.
Une nouvelle voiture pour Noël 🥹
00:28
Nicocapone
Рет қаралды 9 МЛН
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 19 МЛН
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 42 МЛН
Solving ODEs by Series Solutions: Legendre's ODE
11:06
Faculty of Khan
Рет қаралды 184 М.
7 Outside The Box Puzzles
12:16
MindYourDecisions
Рет қаралды 138 М.
Physics Students Need to Know These 5 Methods for Differential Equations
30:36
Physics with Elliot
Рет қаралды 1,1 МЛН
Legendre's ODE II: Deriving a formula for Legendre Polynomials
10:52
Faculty of Khan
Рет қаралды 94 М.
Hermite polynomials and the quantum harmonic oscillator
26:40
Professor M does Science
Рет қаралды 20 М.
The Orthogonality of Hermite Polynomials
9:51
Physics and Math Lectures
Рет қаралды 15 М.
But what is a partial differential equation?  | DE2
17:39
3Blue1Brown
Рет қаралды 2,7 МЛН
Hermite differential equation
14:45
Jeffrey Chasnov
Рет қаралды 58 М.
Part II: Differential Equations, Lec 6: Power Series Solutions
33:29
MIT OpenCourseWare
Рет қаралды 74 М.
Netflix Removed React?
20:36
Theo - t3․gg
Рет қаралды 65 М.