How to Find a Harmonic Conjugate for a Complex Valued Function Nice example of finding a harmonic conjugate for u(x, y) = x^2 - y^2 - x + y. I did this the shortest/fastest/easiest way possible. Hope this helps:)
Пікірлер: 15
@andrewrezendes Жыл бұрын
As pointed out in another comment, this is true, up to a constant. Meaning: both h and g could have included some constant that will show up in the final answer for v(x,y) as a +C; or choose your favorite letter.
@mattyn909 Жыл бұрын
love the content
@Edwin-km4xk2 жыл бұрын
Easy and fast thanks!
@duckymomo79356 жыл бұрын
Just to be clear the analytic function in the end is f(u, v) = u(x,y) + v(x,y)i ? Just substitution of u(x, y) given and v(x, y) derived
@manmadhatelukala8854 жыл бұрын
Tq sir
@TheMathSorcerer4 жыл бұрын
😃
@duckymomo79354 жыл бұрын
This was a year ago...
@talhaprince63414 жыл бұрын
last part of video is not cleared
@Coolgiy672 жыл бұрын
Your v is wrong it should be v= 2xy - x +c
@shwanswarafatahqadir982 жыл бұрын
I agree with you
@prabalmohanta1387 ай бұрын
No it should be 2xy-x-y because if u find total dv which is dv = 2d(xy) - dx -dy and integrare it. To get answer will be as same as in the video
@محمدالمالكي-ث5ث2 жыл бұрын
شكرا 🙏
@abdelkaderahmed496 Жыл бұрын
Stright to the point allah bless you
@vector83103 жыл бұрын
You lost me at the point when you did not explain why you were integrating. Then your integration steps were not explicit enough.