How to use BERTopic - Machine Learning Assisted Topic Modeling in Python

  Рет қаралды 39,194

Python Tutorials for Digital Humanities

Python Tutorials for Digital Humanities

Күн бұрын

Пікірлер: 52
@muhammadarhamriaz629
@muhammadarhamriaz629 2 жыл бұрын
I am brand new to DAW and soft soft - these tutorials are excellent an very helpful to get soone like up and running. Appreciate
@rvian4
@rvian4 Жыл бұрын
wow the features this bert approach provides really improves explanation of topic models
@dubey_ji
@dubey_ji Жыл бұрын
i found your channel today and man I must say thank you very good content
@python-programming
@python-programming Жыл бұрын
Thanks so much!! =)
@xevenau
@xevenau Жыл бұрын
Do you happen to have a tutorial that explains how to turn articles into a dataset for topic modeling. Thanks!
@sarasharick5209
@sarasharick5209 2 жыл бұрын
Great video. I experimented with Top2Vec after that video, so looking forward to experimenting with BERTopic too.
@mmishrafaculty
@mmishrafaculty Жыл бұрын
Awesome. That was so informative. And explained so clearly. Thank you so much.
@python-programming
@python-programming Жыл бұрын
Thanks so much! I am planning a new video on BERTopic soon to cover its new features.
@bentobenack2
@bentobenack2 2 жыл бұрын
This is incredible, I subscribed to your channel today while looking for topic modeling content, I found very good content. However, I would also like to find something from BERTopic, and a few minutes later after subscribed, I receive a notification from KZbin of your channel, and I said, it can't be true! Thank a lot!
@python-programming
@python-programming 2 жыл бұрын
Haha! That is so perfect! Hope this video helps!!
@bentobenack2
@bentobenack2 2 жыл бұрын
@@python-programming Definitely helped!
@danieleriahe-him4693
@danieleriahe-him4693 Жыл бұрын
Thanks so much for the high quality content you published so far, your playlist are a gold mine for beginners and enthusiast into the AI field. Have you ever considered making a video to explain principles of creating an efficient dataset for text summarization, or other specific tasks? Many thanks in advance for your consideration!
@wasgeht2409
@wasgeht2409 2 жыл бұрын
two questions :) 1) Could i write a sentence and they give me after the training the probability for the topic based on the training ? 2) Could i use for example customer requests for training ? in this case you are using a unstructured data. I hope u understand my questions :D
@hankzhong
@hankzhong 2 жыл бұрын
Great intro, but the default has too many topics to be useful for human understanding, is there a way to reduce the number of topics naturally? Also can we measure perplexity and coherence of these topics like LDA? Thanks
@DoreenGyamfi-i7k
@DoreenGyamfi-i7k Жыл бұрын
this was so informative, thank you.
@python-programming
@python-programming Жыл бұрын
I am so glad it was helpful!
@raziehfadaei4801
@raziehfadaei4801 10 ай бұрын
Thank you for your good video. Does BERTopic need any preprocesing like lemmatization or tokenization like LDA?
@TheArnold2002
@TheArnold2002 2 жыл бұрын
Best video on topic modeling I've seen so far. Can I get all documents related to a topic, instead of just the top 3?
@python-programming
@python-programming 2 жыл бұрын
Thanks! Indeed you can. BerTopic has changed a bit since I made this video, so I will have to check the docs but I am certain you can.
@andreasheiner3426
@andreasheiner3426 2 жыл бұрын
Thanks, great tutorial. A question, what's your experience with quality of the model and sentence? Short sentences don't really work (to little semantics), long won't work either (too "much" semantics). Thoughts?
@python-programming
@python-programming 2 жыл бұрын
Thanks! And great question. If you are looking for an off the shelf solution try top2vec, but I think you may run into similar issues. What language are your docs? Also, how varied are they in size? A more custom solution may be necessary.
@andreasheiner3426
@andreasheiner3426 2 жыл бұрын
@@python-programming I've standard English web sites, from product reviews to travel reports. Generally a page contains some 10 paragraphs. Content on a page is highly correlated (you'd expect), so the page content is defined by a few paragraphs. The topic of a paragraph is mostly in a single sentence; the rest is "glue". This turns out to be a reasonable assumption (eye balling). BERTopic supports these observations, especially if you remove paragraphs with the topic probability for the most dominant topic less than some cutoff (say 0.6; the reason that, worst case another topic is present for at most 0.4). From experience you're left with 3% unallocated documents; each allocated document has at most 3 topics. This is all nice, assuming BERTopic gives good results for both long and short paragraphs with the same hyper parameters. If my assumption is incorrect I've a problem :( So, thoughts?
@kennethgomes4727
@kennethgomes4727 Жыл бұрын
Please can you explain why didnt you use UMAP, HDBSCAN and C-TF-IDF for this?
@python-programming
@python-programming Жыл бұрын
Thanks for the question! You absolutely can. I have a whole other tutorial that walks through each of those steps. I think BERTopic, LeetTopic (my library), and Top2Vec provide a simpler solution for those who may not be familiar with a custom UMAP, HDBScan workflow. I try to make tutorials for users at all levels and I think these other libraries address the needs of those newer to Python/ML.
@somewhereovertherainbow9550
@somewhereovertherainbow9550 5 ай бұрын
Thanks!!! very much helpful!
@hosseinahmadi1855
@hosseinahmadi1855 Жыл бұрын
Greeeeeeeeat!. Thanks. Another useful video
@grgr1467
@grgr1467 2 ай бұрын
hi ! where can i find the source file you used?
@suhasp2385
@suhasp2385 2 жыл бұрын
Just simply put the code, it works! thanks!
@yashjain2841
@yashjain2841 3 ай бұрын
How to run it on dataset with more than 12k rows?It is showing some "correct_alternative_cosine" error. Please help
@KR-good
@KR-good 11 ай бұрын
Great presentation.
@johnny_silverhand
@johnny_silverhand 2 жыл бұрын
Fantastic explanation
@luiztauffer8513
@luiztauffer8513 2 жыл бұрын
Thanks for the amazing content! Do you know if BERTopic could be used to train a model to identify similarity to custom, pre-defined topic?
@python-programming
@python-programming 2 жыл бұрын
Thanks! I would not use BERTopic, rather soaCy for text classification. You could use BERTopic to gather data for easy labeling.
@luiztauffer8513
@luiztauffer8513 2 жыл бұрын
@@python-programming thanks a lot, I actually went on to search for it and found another one of your videos explaining EXACTLY what I wanted! For reference it's this one: "The EASIEST! way to do Text Classification with spaCy and Classy Classification" thanks again!
@python-programming
@python-programming 2 жыл бұрын
@@luiztauffer8513 haha! Perfect! No problem!
@sohinisarkar1935
@sohinisarkar1935 3 ай бұрын
Is it possible define number of topics here ?
@BillVoisine
@BillVoisine 6 ай бұрын
Thank you!!
@mrtn5882
@mrtn5882 2 жыл бұрын
Nice tutorial, thank you! If I follow the video correctly, about 25% of your documents are marked as outliers. Is that normal? Can you maybe talk about this a bit in a further video?
@python-programming
@python-programming 2 жыл бұрын
Yea that is a bit normal woth BERTopic. I plan to do another video that compares dofferent topic modeling approaches and that will be a key feature
@mrtn5882
@mrtn5882 2 жыл бұрын
@@python-programming Great, I’m looking forward to that video! 😊
@emekaobiefuna4509
@emekaobiefuna4509 Жыл бұрын
Great info!
@wasgeht2409
@wasgeht2409 2 жыл бұрын
Wow
@johnny_silverhand
@johnny_silverhand 2 жыл бұрын
Best topic model to use for modelling 3000 documents each having 3 pages of text ?
@adambenari3944
@adambenari3944 2 жыл бұрын
BERTopic or Top2Vec will both work, but you'll need to reduce your corpus to shorter text. You can use an introduction or conclusion as your text, or perform some summarization before you start modelling
@tantzer6113
@tantzer6113 2 жыл бұрын
Does this work for Arabic documents?
@python-programming
@python-programming 2 жыл бұрын
As long as there is a BERT model for Arabic, yes. I know there is an NEH funded project for this but I am not sure if it is available yet. There is a lot of research in Arabic NLP so I would be surprised if another does not already exost. I do not have Arabic, though, so I cannot validate the results.
@tantzer6113
@tantzer6113 2 жыл бұрын
@@python-programming Thank you for answering.
@flosrv3194
@flosrv3194 8 ай бұрын
no way to install this shit, get error popping from everywhere and when i resolve them, thre others appear, unusable crap
@LearnProfessional1
@LearnProfessional1 2 жыл бұрын
is tNice tutorials ASMR?
@niflag
@niflag 2 ай бұрын
So quiet
@olucasharp
@olucasharp Жыл бұрын
Comment to say thanks and support this absolutely awesome channel 🪩 Huge thanks and this is sooo clearly explained, good luck ⚡
@python-programming
@python-programming Жыл бұрын
Thank you so much for your support and this wonderful comment!
The Best Way to do Topic Modeling in Python - Top2Vec Introduction and Tutorial
15:08
Python Tutorials for Digital Humanities
Рет қаралды 30 М.
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН
Правильный подход к детям
00:18
Beatrise
Рет қаралды 11 МЛН
IL'HAN - Qalqam | Official Music Video
03:17
Ilhan Ihsanov
Рет қаралды 700 М.
building a startup in your 20s | PROJECT 70
30:02
Ryan Burry
Рет қаралды 1,3 М.
Latent Dirichlet Allocation (Part 1 of 2)
26:57
Serrano.Academy
Рет қаралды 139 М.
LLM-powered Topic Modeling
1:25:56
Apply AI like a Pro
Рет қаралды 5 М.
An Introduction to Topic Modeling
26:39
Summer Institute in Computational Social Science
Рет қаралды 70 М.
Sentiment Analysis with BERT Neural Network and Python
31:56
Nicholas Renotte
Рет қаралды 133 М.
How to Create an LDA Topic Model in Python with Gensim (Topic Modeling for DH 03.03)
24:36
Python Tutorials for Digital Humanities
Рет қаралды 64 М.
Transformers, explained: Understand the model behind GPT, BERT, and T5
9:11
BERTopic Just Got Better! Introducing Exciting Features in v0.16
18:00
Maarten Grootendorst
Рет қаралды 7 М.
Best Way to OCR a PDF in Python - spaCy Layout
15:21
Python Tutorials for Digital Humanities
Рет қаралды 863