Image Gradient

  Рет қаралды 86,483

Udacity

Udacity

Күн бұрын

Пікірлер: 21
@Rebo3D
@Rebo3D 5 жыл бұрын
"Where is the edge? Hope you know the answer abit". . . . . 4-years-later-Me: "Not yet"
@youneshamza381
@youneshamza381 3 жыл бұрын
6 years after ... still not answered. ( LOOL )
@ranad2037
@ranad2037 2 жыл бұрын
It's perpendicular to the direction of the gradient
@ahmadbelhaj1756
@ahmadbelhaj1756 6 жыл бұрын
I don't understand why can't you just do it 3*3 matrix?
@Hans_Magnusson
@Hans_Magnusson 10 ай бұрын
What do you mean? You can apply this to any rank of ℝⁿ… But you are analyzing a two-dimension image… hence two dimensions. But the results could be stored in a matrix and then you can plot the minima and maxima and get a nice 3D plot..!
@MrRobi10
@MrRobi10 3 жыл бұрын
Hello, if I have an image with 11x11 pixels and In the center of the image is a square of 5x5 pixels. The gray level of the background is 0 and the gray level of the square is 50. How can I compute the result of the magnitude of edges given by the compass operator for this image taking into account that the image is not noisy? I have the code but I don't know how to apply the math on paper...
@satashreeroy1652
@satashreeroy1652 5 жыл бұрын
The image function is the function of intensities, right? How do we write it in the form a 'function'?
@mohammadidreesbhatresearch6505
@mohammadidreesbhatresearch6505 5 жыл бұрын
Image is also a function.
@sepidet6970
@sepidet6970 4 жыл бұрын
it can be represented as function in spatial domain with x and y as variables, the variables show the spatial location of pixels and the output of the function is the pixel value in that location. f(x, y) = r that r is pixel value
@sergeimerekin8193
@sergeimerekin8193 3 жыл бұрын
Thank you! Concise and clear explanation!
@divyar3668
@divyar3668 6 жыл бұрын
Thank you so much , nothings i had seen like this kind of explanation very informative with practical explanation . thank you again :-)
@emirhandemir3872
@emirhandemir3872 7 ай бұрын
Was it this simple? OMG
@anp6700
@anp6700 7 жыл бұрын
Hello, thank you for your very informative and helpful video. Could you please tell the answer for the last question (where is the edge)? I don't have a base on image processing so it's really hard to find the answer. Thanks again.
@abdurrehmanatif5016
@abdurrehmanatif5016 6 жыл бұрын
oky well we can find edge using theta and Ro by applying equation of line Ro = XsinQ + ySinQ
@ranad2037
@ranad2037 2 жыл бұрын
It's perpendicular to the direction of the gradient
@chawza8402
@chawza8402 4 жыл бұрын
what is the f?
@jrfgeographystudy
@jrfgeographystudy 3 жыл бұрын
Thanks sir
@Hans_Magnusson
@Hans_Magnusson 10 ай бұрын
In economy we use the two-dimensional gradient, but call it a Jacobean!!! A Hessian is then a multi-dimensional second derivative… One use case is in credit scoring your customer for a credit card application approval…! My two 💳 swipes Oh and when scanning a 3d surface to find local and global minimum and maximum… Eg is it the local hill by the church, or is it perhaps Mount Everest we found, perhaps the Mariana Trench… 😂
@Hans_Magnusson
@Hans_Magnusson 10 ай бұрын
Then there is some basic Pythagoras and the geometry of a triangle involved 👌
@donfeto7636
@donfeto7636 6 жыл бұрын
Give me the fucking answer :D
Edge Detection Using Gradients | Edge Detection
10:44
First Principles of Computer Vision
Рет қаралды 96 М.
Edge Detection Using Laplacian | Edge Detection
12:39
First Principles of Computer Vision
Рет қаралды 94 М.
Ice Cream or Surprise Trip Around the World?
00:31
Hungry FAM
Рет қаралды 8 МЛН
They Chose Kindness Over Abuse in Their Team #shorts
00:20
I migliori trucchetti di Fabiosa
Рет қаралды 12 МЛН
2 MAGIC SECRETS @denismagicshow @roman_magic
00:32
MasomkaMagic
Рет қаралды 33 МЛН
convolution of images
6:54
Alexandre Damião
Рет қаралды 185 М.
Resizing Images - Computerphile
9:22
Computerphile
Рет қаралды 472 М.
Finding the Edges (Sobel Operator) - Computerphile
7:46
Computerphile
Рет қаралды 504 М.
Image filtering: features: histogram of gradients (HOG)
9:09
Hany Farid, Professor at UC Berkeley
Рет қаралды 6 М.
Geometric Meaning of the Gradient Vector
14:51
Dr. Trefor Bazett
Рет қаралды 196 М.
Lecture 03 - Edge Detection
44:07
UCF CRCV
Рет қаралды 99 М.
Image Filtering - Linear Filters (Lecture 3, Part 1)
27:46
Ronak Kosti
Рет қаралды 8 М.
How Blurs & Filters Work - Computerphile
7:52
Computerphile
Рет қаралды 558 М.
Ice Cream or Surprise Trip Around the World?
00:31
Hungry FAM
Рет қаралды 8 МЛН