Imputing missing bikeshare data with R

  Рет қаралды 968

Equitable Equations

Equitable Equations

Күн бұрын

Пікірлер: 8
@EquitableEquations
@EquitableEquations 5 ай бұрын
You can find materials supporting this vid (and others) at github.com/equitable-equations/youtube.
@haraldurkarlsson1147
@haraldurkarlsson1147 5 ай бұрын
Very interesting. I do still think that in this dataset little is gained by imputation. With so few missings it has practically no effect. However, the exercise itself is of great value because it demonstrates how (and perhaps when) to impute different types of missing values. I would like to see more on imputation and perhaps a bit of dive into the different types of missings (MAR, MCAR and MNAR) which boggle the mind. Thanks for another great video.
@GerhardBreitlander
@GerhardBreitlander Ай бұрын
Me too! Methods like mice, missRanger, step_knn, missMDA, using PCA and all that stuff. :) There are so many alternatives, that I think it would be nice to compare each method in an easy way. Probably each dataset benefit differently with regards to the imputation method
@pipertripp
@pipertripp 5 ай бұрын
for folks using R studio, if you want info about a function, put the cursor on the function and hit the F1 key. It does the same thing as ?my_func in the console but is faster if you have already included the function in your code.
@ichigokurosaki-ei9sq
@ichigokurosaki-ei9sq 5 ай бұрын
@ThomasJacobsen-h8d
@ThomasJacobsen-h8d 5 ай бұрын
for working_day I would sort the data (already done) then group_by day and then tidyr::fill and then ungroup
@EquitableEquations
@EquitableEquations 5 ай бұрын
Yep! That works great unless midnight is missing, in which case the wrong day gets filled 🤓
@ThomasJacobsen-h8d
@ThomasJacobsen-h8d 5 ай бұрын
@@EquitableEquations true, forgot that. after some considerations and if else should do the trick when the value is either 0 or 1 each day, otherwise i guess a fill in both directions
Overfitting in machine learning
17:45
Equitable Equations
Рет қаралды 679
Today I learned in R: Quarto books
16:35
Equitable Equations
Рет қаралды 1 М.
路飞做的坏事被拆穿了 #路飞#海贼王
00:41
路飞与唐舞桐
Рет қаралды 26 МЛН
“Don’t stop the chances.”
00:44
ISSEI / いっせい
Рет қаралды 42 МЛН
Logistic regression with R: example
20:47
Equitable Equations
Рет қаралды 1,8 М.
A step-by-step guide to parameterized reporting in R using Quarto
20:16
R for the Rest of Us
Рет қаралды 3,7 М.
Poisson regression in R
25:20
Equitable Equations
Рет қаралды 2,7 М.
Understanding geom_smooth's default loess method
15:57
Equitable Equations
Рет қаралды 621
Loops using R programming
13:37
R Programming 101
Рет қаралды 16 М.
Poisson regression
9:44
Equitable Equations
Рет қаралды 3,3 М.
Learn R in 39 minutes
38:56
Equitable Equations
Рет қаралды 767 М.
Today I Learned in R: geom_shadowtext with David Keyes
14:05
Equitable Equations
Рет қаралды 544
Learning Pandas for Data Analysis? Start Here.
22:50
Rob Mulla
Рет қаралды 121 М.
路飞做的坏事被拆穿了 #路飞#海贼王
00:41
路飞与唐舞桐
Рет қаралды 26 МЛН