Its just the opposite of normal mathematics, instead of making equation simpler we just make it more complicated.
@blackpenredpen6 жыл бұрын
Daniel Peter pretty much! : )
@alan2here6 жыл бұрын
Apparently some continued fractions have reasonably large solution sets? More than 2 answers. I'd also love to see some mathematical constants beyond phi and the often mentioned ones and get some more intuition for how the series of integers results in this impressive diversity of common constants.
@goragabdula82035 жыл бұрын
Absolutely! My friend once said the following: "The point of math is to transform huge equation to have 1,0, pi or x " So, it works vice versa too)
@jagrutivispute76004 жыл бұрын
Yes it's not simplification it's complication
@MrConverse Жыл бұрын
Perhaps, but it’s also much more fun this way!
@vipulshukla63456 жыл бұрын
7:34 That correctional 2️⃣ on the left side! ❤️
@JustATest015 жыл бұрын
Nobody could have seen it
@alkankondo896 жыл бұрын
Ah, yes - continued fractions: the subject of my master's thesis, which I recently completed! I learned so much about simple continued fractions and their properties, and this video is a great introduction to the subject!
@blackpenredpen6 жыл бұрын
alkankondo89 yay!!!! I like CFs too. And congrats on your masters degree!!
@alkankondo896 жыл бұрын
Thank you very much! It took a lot of work to get that degree, but I'm glad to have gotten it. Now, I'm continuing to watch your videos to keep up my math skills!!
@pauljackson34916 жыл бұрын
Can you upload you thesis or it it illegal or you don't want?
@alkankondo896 жыл бұрын
I appreciate your interest! I'm not really comfortable posting my thesis online, but if you want, you can search "even-integer continued fractions and the Farey Tree" to get an idea of what my thesis covered. There is a paper by Ian Short and Mairi Walker that I cited heavily in my thesis; that paper should be easy to find with a Google search.
@CornishMiner6 жыл бұрын
The golden ratio is very elegant as a continued fraction.
@adude65684 жыл бұрын
Indeed it is. I found it to be equal to 1 + 1 / (1 + 1 / (1 + 1 / (1 + ...)))
@themathsgeek85282 жыл бұрын
Yes!
@Psi_Fan1237 ай бұрын
Yes, phi=1+1/phi then you go "hey look, I can replace that with this!" And then you get phi=1+1/(1+1/phi) then after a while Phi=1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(.........)))))))) Also a neat thing about phi is that phi^2=phi+1, there is another number with this property and it exists because of the equation (x^2)-x-1=0, As when you go and do this you get (1±sqrt(5))/2 and then you get phi=(1+sqrt(5))/2 and the other one that is (1-sqrt(5))/2, because sqrt(5) is bigger than 1, you get that the other number that satisfies x^2=x+1 is actually a negative number
@BigDBrian6 жыл бұрын
when you take 2 = 1 + 2/2 you can also substitute for the 2 in the numerator, creating a fraction tower diagonally upwards. No idea about the uses for this , just seems cool
@PrincessEev6 жыл бұрын
Or even nuttier - substitute it in both the numerator and denominator. :p
@drakkenfan2 Жыл бұрын
And then substitute the fraction for the 2s in the new fractions infinity times
@yoavcarmel12456 жыл бұрын
because 1+1=2 :)
@blackpenredpen6 жыл бұрын
Yoav Carmel yes!! That's very important.
@U014B5 жыл бұрын
But did you know that 2 = 1 + 1?
@alejrandom65923 жыл бұрын
@@U014B :0
@shivamchouhan50773 жыл бұрын
@@U014B really, thank you so much bro I didn't know Can you give me a proof
@dhruvtalwar72503 жыл бұрын
@@blackpenredpen hey sir, if we equal the given fraction as x we can right 2+ 1/(2+1)....to infinity as x+1 . Then we can simply right the repeating unit as x+1 too . We get the equation x^2 equal to 2 there . Neglecting the negative the answer is root 2 . Is this mathematically correct
@Bidisha_Nath2 жыл бұрын
Really useful... Thanks... From. Assam, India
@dammuraja80104 жыл бұрын
Student from india. Lovely explaination sir, enjoyed.😄
@ImKurono6 жыл бұрын
Before class started my Calc 3 teacher was talking about this on Wednesday
@blackpenredpen6 жыл бұрын
Oh cool!!
@NeerajSharmah2c2o46 жыл бұрын
It's there a continued fraction for pi?
@stevethecatcouch65326 жыл бұрын
Yes, but it's ugly. The continued fraction for phi is much prettier.
@NeerajSharmah2c2o46 жыл бұрын
@@stevethecatcouch6532 I know the one for phi.
@ffggddss6 жыл бұрын
All true. There are many interesting side roads in this territory. For instance, what if the b's (numerators) are kept at 1, but the a's (denominators) are allowed to be integers of either sign? (Short ans: You get more efficient CF's! Ex: φ = [2; -3,3,-3,3,...] ) Some day, I'm gonna hafta get off my duff and make a video about these fascinating gems myself... Fred
@icespirit6 жыл бұрын
the one for pi is: [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, ...] (ugly)
@blue_tetris6 жыл бұрын
The continued fraction for pi also doesn't repeat or form patterns. One of the reasons is because it is transcendental (but the proof is fairly complex).
@axbs48632 жыл бұрын
alright heres my work to solve for that continued fraction: 1+(1/(2+1/(2+....) take out that initial (1+) term for now set 1/(2+1/(2+.... = x replace the repeating terms with x to get: x = 1/(2+x) multiply both sides by (2+x) to get x^2 + 2x = 1 subtract by 1 on both sides to get a quadratic; x^2 + 2x - 1 = 0 quadratic formula: x = (-2 +/- sqrt(4+4))/2 simplfiy to get -1 +/- sqrt(8)/2 add that (+1) term back in to cancel out that (-1) term x = sqrt(8)/2 = 2sqrt(2)/2 = *sqrt(2)*
@blackholesun49428 ай бұрын
Thanks, this worked nicely and seems to use recursion
@pauselab55699 ай бұрын
proving that they must converge at a fixed point is insanely difficult. made me learn banach's fixed point theorem.
@jumpman8282 Жыл бұрын
This was fun. Especially since I about a week ago saw Virgin Rock's reaction video to Tool's song "Lateralis", whose musical structure is based on the Fibonacci sequence. What I learned from that video is that the ratio between two consecutive Fibonacci numbers approximates the golden ratio and the further down the sequence we go the better the approximation will be. What I managed to figure out is that the "Fibonacci ratio" can be written as the continued fraction 1 + 1/(1 + 1/(1 + ... but I couldn't satisfactorily show that this continued fraction is equal to the golden ratio, i.e., (1 + √5)/2. But then this video popped up in my feed and it painfully dawned on me that all I needed to do was to write (1 + √5)/2 as a continued fraction.
@chriswebster24 Жыл бұрын
In the past, apparently, this man proved that the square root of 2 is irrational. That's how I know he's very wise.
@borisburd29515 жыл бұрын
i dont know why but the continued fraction of sqrt of 2 made me laugh haha its so elegant
@Goku17yen6 жыл бұрын
seems very similar to the thing you see when first introduced to series, where you add together the infinite sum of a repeated decimal or something of that sort :D
@Eternap6 жыл бұрын
Goku??Even you can understand this?! :p
@blackpenredpen6 жыл бұрын
Of course, he is a super saiyan!
@Goku17yen6 жыл бұрын
Eternal Entity lmao
@alan2here6 жыл бұрын
Greatest compositing ever :)
@heribertobarahona76956 жыл бұрын
Continued Fractions are so fun especially with irrational numbers!!! I just Log in to Brilliant, looks like an awesome page!!!
@blackpenredpen6 жыл бұрын
I like CFs a lot too!! Just really hard to write it neatly tho. : )
@heribertobarahona76956 жыл бұрын
Yeah!! You're totally right in that aspect.
@adamhrankowski12986 жыл бұрын
How about changing the numerator 2's as well?
@МаксимФролов-о4ц4 жыл бұрын
This video made my day!
@yuval2be6 жыл бұрын
I read more about continued fractions, especially infinite contined fractions. But I didn't understand how to find the value of a given infinite continued fraction with known sequence. For example: [1,2,3,4...] or [1,4,9,16,25,36...]. If there is a known sequence does it mean the value is algebric number? I understood that because "pi" is Transcendental number there is not a pattern for the continued fraction.
@colejohnson664 жыл бұрын
e is transcendental as well, but it does have a recognizable pattern: [2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...] After the first 2, it begins going [1,2n,1] (every second term in the group of three is two more than the last group’s second term)
@jacoboribilik32536 жыл бұрын
Great math channel, im so glad to have come across it.
@jagrutivispute76004 жыл бұрын
Thank you so much before I wasn't knowing how to turn a fraction into the continuous fraction form but after watching video now I come to know thank you again
@jihyepark91394 жыл бұрын
Wow, I love it.
@rajatmeena73416 жыл бұрын
That's great
@hossamabdulsalam15146 жыл бұрын
Sir, Please solve this problem. 3^(cot(x))^2 = 9*sin(x)*cos(x) Find the values of x. Many time I wrote this problem 🙏🙏
@AccuphaseMan5 жыл бұрын
if you can't solve a problem that easy, i feel sorry for you
@devanshtripathi78792 жыл бұрын
@@AccuphaseMan ohhh if thats the case write solution then flex off if u cant then shut up and move on
@mrocto3292 жыл бұрын
@@AccuphaseMan haven't solved it yet? It's been 2 years kid, I'm starting to feel sorry for YOU
@Patapom36 жыл бұрын
Great! Would have loved to see Phi developed as a continued fraction as well...
@maxfraguas2 жыл бұрын
Thank you very much!
@jonathanaguillon57017 ай бұрын
You know, that stuff (continued fraction) is the initial algorithm to help me find new set of gear, it is vital to detemine the number of teeth of drive and driven gear.
@danieltiema3 жыл бұрын
Very helpful, thankyou...
@BeltranAmenabar6 жыл бұрын
Can you make a video about simplifying continued fractions to get the original number back?
@blackpenredpen6 жыл бұрын
Beltrán Amenábar yup. That will be my future videos.
@BeltranAmenabar6 жыл бұрын
blackpenredpen Yay!!
@arnavtripathi273 Жыл бұрын
I did it another way by adding 1 on both sides of eqn then we get x+1 = 2 + 1/(2+1/2.......... If we write it like x+1 = 2+ 1/(x+1) ... solving for x we'll get x=±√2 and we can also conclude that the result will be positive since all stuff that's being added is positive.
@RaphaelFassy4 жыл бұрын
Great video!
@MercenarySmash6 жыл бұрын
Dang looking good with that fresh haircut
@VIJAYSWARUP5 жыл бұрын
Can you make an infinite continued fraction video for pi ?
@danielevanzan43404 жыл бұрын
I think this is amazing
@AngeloLaCruz6 жыл бұрын
Love this ONE !!!!
@takyc78834 жыл бұрын
This was actually such a fun video lol
@snuffles72226 жыл бұрын
absolute awsome!
@yaakoubfarah4135 жыл бұрын
Thank you!
@SuperYoonHo2 жыл бұрын
awesome!
@sawyerandrobbie3 жыл бұрын
Super interesting
@renatoshigueto92915 жыл бұрын
Thanks man, i was have a difficult problem for understand this and now.. i get it, thanks
@flamingpaper77516 жыл бұрын
What about a continued fraction for functions, such as x/ln(x/ln(x/...))?
@icespirit6 жыл бұрын
then x would have to be bigger than infinity (I think)
@ThePianofreaky6 жыл бұрын
If you call the whole thing y, you can rewrite it as y = x/ln(y) . Now, solve for y. y * ln(y) = x ln(y^y) = x y^y = e^x y is the super root of e^x. That's how you can solve these problems in general.
@icespirit6 жыл бұрын
sorry i was sleepy and i didnt want to think :p
@brainlessbot36996 жыл бұрын
@@ThePianofreaky does it converge for every value of x?
@That_One_Guy...5 жыл бұрын
Actually continued fraction also appear at polynomial division (when the denominator is higher degree than the remainder)
@yeshasp.rangayeshu2176 жыл бұрын
Awesome grt video I really loved it
@janv.85385 жыл бұрын
8:55 cant you plug in this term on the top of the fraction, which would make it infinetely complicated?
@mountainc10275 жыл бұрын
Oh my god it looks like the one shown in the video but "reflected" in the x-direction
@amirparsi41655 жыл бұрын
Looking sharp
@moshadj5 жыл бұрын
So for the last example of the continued fraction of 2 you can also use the relation for 2 on the numerator as well.
@jcb33934 жыл бұрын
But then that just reverts back to a series in the numerator and the same series in the denominator, which is x/x which is 1. So we are back to 1+1=2.
@rongzhang92834 жыл бұрын
your big help
@JoseFernandez-wt2ud6 жыл бұрын
Nice!
@toferg.82646 жыл бұрын
Thanks!
@aymanabdellatief15725 жыл бұрын
Do you have similar patterns for sqrt(3) , sqrt(5), and other irrational square roots? What about cube roots and higher order roots?
@Debg916 жыл бұрын
Nice jacket! True gentlemath 😉
@danielbenyair3006 жыл бұрын
6:33 the silver ratio equal to 1+sqrt2 Note: the ... at the end is wrong!! There has to be sqrt2 at the end!!!
@morgengabe16 жыл бұрын
I feel like it's circular to define number with a continued fraction that contains it, no? Is that appropriate? this is my first real experience with them. Sorry for silly questions.
@deusvult57385 жыл бұрын
Well, it's more like a series. Has stuff to do with limits
@dr.rahulgupta75733 жыл бұрын
Very good explanation green pen blue pen red pen ( gp bprp) .Thanks . DrRahul Rohtak Haryana India
@Spectrojamz4 жыл бұрын
6:18. How many times do you want me to do this; seriously I don't know🤣😂😂
@YorangeJuice3 жыл бұрын
Cool vid
@ShaniYadav-dk1ns5 жыл бұрын
Nice sir
@hamsterdam19426 жыл бұрын
8:40 that's pretty much eat? What do you mean?
@sandhinfk6 жыл бұрын
If you just cut the video part and keep the audio part, you can make a 10 hour video on “I see this square root of 2, then i can put this into that, ......., now I see this square root of 2 again, then i can put this into that again............”
@sreejithunni32676 жыл бұрын
I love mathematics and you..😘😘😘😘
@jcb33934 жыл бұрын
It's neat and all, but is there any practical application for continued fractions, infinite or otherwise?
@danmccarron04 жыл бұрын
the answer is yes. the fact that it terminates after finite number of iterations for rational numbers is a perfect way to test for closure of a subset of the infinite group of elements obeying this property and that could correspond to something physically real, like, say, the number of accessible states of the system of discrete energy levels (a behavior of quantum mechanics) or something like that. or it could demonstrate how many times you have to shuffle a certain set of elements before you get back what you started with. Only elements whose values are integer or fractional numbers will return back to the starting point and that is determined specifically by the number of times you can iterate a continued fraction. I'm sure there are plenty of applications other than this but these come to mind.
@vector831011 ай бұрын
Yours is a first-rate reply.
@fCauneau6 жыл бұрын
May look tricky for math lovers, but the paradox is that it makes some of the structure of numbers accessible for people who only know in arithmetics...
@kingbeauregard6 жыл бұрын
Continued fractions are cool, and are a good way to find rational approximations for numbers with lots of decimal places. Using continued fractions, even an oaf like me was able to independently derive that 355/113 is a freakishly good approximation for pi (3.1415929 instead of 3.1415927). 355/113 is easy to remember, by the way, if you think denominator and then numerator: one one three three five five.
@sanchitkumar65508 ай бұрын
What is the source from where this topic has been taken
@drjagtarsingh34985 жыл бұрын
Nice
@SuperDeadparrot Жыл бұрын
How would you take a derivative of a continued fraction?
@SuperDeadparrot Жыл бұрын
Is the representation unique?
@dmavbchy3 жыл бұрын
Given a continued fraction, how I deduce what number/function is it?
@ישראלורטהימר2 жыл бұрын
I have a question you say that because 2=1+(2/1+(2/1+... have 2 on the up size it is not a irr so I can do the following 2= 1+1=1+2/2=1+1/2/2 2=1+1/2/2-------------------------------------------------------^ 2=1+1/((1+1/2/2)/2) and then you have the ones on the top. so what i got wrong
@ffggddss6 жыл бұрын
Thanks! CFs are a pet topic of mine. This video should help raise interest in them; it is very basic, and right away leads any inquisitive mind to ask a myriad of other questions. _So like a siren, drawing in all unwary sailors to her lair..._ Fred
@vector831011 ай бұрын
Great comment! I actually purchased Oskar Perron's German language Die Lehrer von den Kettenbruchen because I've caught the continued fraction bug.
@adamoksiuta47154 жыл бұрын
Do you know what is result of infinite continued fraction when you have only ones (1)? :P
@m4nde3 жыл бұрын
it’s the golden ratio 1.618033… (phi) 1/phi + 1 = phi x = 1+1/(1+1/(1+1/(1+…) 1/x + 1= x (:
@adamoksiuta47153 жыл бұрын
@@m4nde Correct :)
@lukecox63176 жыл бұрын
Correct me if I am wrong, but the expansion of 2, if we assumed we don't know the answer, we could write that as x = 1+(2/x), which has two answers, one which is 2 and the other -1?
@jimjam19486 жыл бұрын
Hey bprp can you discuss the erdos-straus thereom next. The theory behind it is pretty simple and easy to understand even for young children. Pleaseeeeèe
@blackpenredpen6 жыл бұрын
Ok, I will try! I have many things planned already (such as the Goldbach's Conjecture) but that is certainly an interesting one too! Thanks!
@jimjam19486 жыл бұрын
@@blackpenredpen yesss that's great
@donwald34363 жыл бұрын
7:37 You're not supposed to use white-out on your monitor.
@himanshumallick22696 жыл бұрын
Turns out that continued fractions are important for Pell's Equation. The Pell's Equation rearranges to (x/y)^2=(d)+O(1/y^2) Where d is not a perfect square. So, taking the rational approximations of √d (via continued fractions) gives solutions for x and y in integers. _(This method was due to Ramanujan)_
@johnny_eth4 жыл бұрын
How would you build the fraction for pi ?
@star_ms2 жыл бұрын
Can all algebraic irrationals be written as infinite CFs?
@snejpu25086 жыл бұрын
YAY!!!
@samarthsai95306 жыл бұрын
I don't know why but I can smell some metallic ratios. #festive season
@_DD_156 жыл бұрын
You need to do more of these. Continued fractions are such a wonderful subject and they are always neglected. Do pi, that one is fun 😛
@canaDavid14 жыл бұрын
Okay, Integer = continued fraction with 1 term Rational = continued fraction with finite terms Algebraic = infinite fraction, but repeating numbers Transcendental = infinite fraction, not repeating Is this correct?
@mrgreenskypiano2 жыл бұрын
No, one of pi's continued fractions has repeating terms or a pattern of terms
@canaDavid12 жыл бұрын
@@mrgreenskypiano which one?
@canaDavid12 жыл бұрын
@@mrgreenskypiano also, i was referring to the continued fractions with 1 as all numerators
@mrgreenskypiano2 жыл бұрын
@@canaDavid1 Ah, ok, it isn't a simple cf
@nellvincervantes32235 жыл бұрын
Physics? Mechanical vibration? Can you explain it pls?
@ethanchandler39343 жыл бұрын
Cant we say 2 is irrational since it can be written as an infinite fraction?😂
@sam.asdfjkl3 ай бұрын
They proposed a wrong theory if it's infinite continues its irrational? Lol
@gocrazy4325 жыл бұрын
The problem with the sqrt2 continued fraction is you don't have to go past the point you wrote it in the denominator any more than you don't have to complete ramanujans sum of infinite nested rooted perfect squares. We already knew sqrt2 doesn't terminate. It doesn't matter that that the fractions continue infinitely as even rational numbers have infinite decimal notations and see ramanujan finite AND infinite representation of an integer. That didn't really prove anything.
@shubhampaswan32863 жыл бұрын
Greenpenredpen :-) Yay ...
@breakzxz6486 жыл бұрын
since sqrt root of 2 is equal to (1 + sqrt of 2 -1) then u cannot multiply (sqrt of 2 - 1) only thats my opinion correct me if im wrong, its still cool though getting that infinite sequence 👍
@antimatter23766 жыл бұрын
If you divide it by the same thing, it's ok
@GeodesicBruh5 жыл бұрын
Lol that 2 at 6:37
@jihyepark91394 жыл бұрын
He talks like my Math Teacher in highschool.
@MathIguess5 жыл бұрын
I wanted you to do it 100 times :(
@2tri7496 жыл бұрын
0:00 hmm... *BRILLIANT* #blackPENredPEN #YAY
@Qermaq Жыл бұрын
Rather than "simplify" the objective is "obfuscate".
@alexismandelias6 жыл бұрын
What about continued fraction for e?
@mrkosmos94216 жыл бұрын
* Ability to solve continued fractions acquired *
@Rekko826 жыл бұрын
0 = 0 /1 = 0/(1+0/1) = 0/(1+0/(1+0/1)) or something like that.
@yoavcarmel12456 жыл бұрын
not simple tho :)
@urvpatel8295 жыл бұрын
Hey I'm 😀from India but why I enjoy your lecture (I don't know)
@11.anoodaygoswami742 жыл бұрын
Srinivasa ramanujan ❤️
@CharIie834 жыл бұрын
wont the value change as you go down the ladder of fractions? I know the numbers stay the same, but the values are changing, or?
@inakibolivar6644 жыл бұрын
No, they don’t change at any point
@toufik96323 жыл бұрын
A=2 A-2=0 (A-2)(A+3)=0 A²+A-6=0 A(A+1)=6 A=(6/A)-1 And repeat and repeat😅