Infinite Continued Fractions, simple or not?

  Рет қаралды 132,984

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер
@danielpeter725
@danielpeter725 6 жыл бұрын
Its just the opposite of normal mathematics, instead of making equation simpler we just make it more complicated.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Daniel Peter pretty much! : )
@alan2here
@alan2here 6 жыл бұрын
Apparently some continued fractions have reasonably large solution sets? More than 2 answers. I'd also love to see some mathematical constants beyond phi and the often mentioned ones and get some more intuition for how the series of integers results in this impressive diversity of common constants.
@goragabdula8203
@goragabdula8203 5 жыл бұрын
Absolutely! My friend once said the following: "The point of math is to transform huge equation to have 1,0, pi or x " So, it works vice versa too)
@jagrutivispute7600
@jagrutivispute7600 4 жыл бұрын
Yes it's not simplification it's complication
@MrConverse
@MrConverse Жыл бұрын
Perhaps, but it’s also much more fun this way!
@vipulshukla6345
@vipulshukla6345 6 жыл бұрын
7:34 That correctional 2️⃣ on the left side! ❤️
@JustATest01
@JustATest01 5 жыл бұрын
Nobody could have seen it
@alkankondo89
@alkankondo89 6 жыл бұрын
Ah, yes - continued fractions: the subject of my master's thesis, which I recently completed! I learned so much about simple continued fractions and their properties, and this video is a great introduction to the subject!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
alkankondo89 yay!!!! I like CFs too. And congrats on your masters degree!!
@alkankondo89
@alkankondo89 6 жыл бұрын
Thank you very much! It took a lot of work to get that degree, but I'm glad to have gotten it. Now, I'm continuing to watch your videos to keep up my math skills!!
@pauljackson3491
@pauljackson3491 6 жыл бұрын
Can you upload you thesis or it it illegal or you don't want?
@alkankondo89
@alkankondo89 6 жыл бұрын
I appreciate your interest! I'm not really comfortable posting my thesis online, but if you want, you can search "even-integer continued fractions and the Farey Tree" to get an idea of what my thesis covered. There is a paper by Ian Short and Mairi Walker that I cited heavily in my thesis; that paper should be easy to find with a Google search.
@CornishMiner
@CornishMiner 6 жыл бұрын
The golden ratio is very elegant as a continued fraction.
@adude6568
@adude6568 4 жыл бұрын
Indeed it is. I found it to be equal to 1 + 1 / (1 + 1 / (1 + 1 / (1 + ...)))
@themathsgeek8528
@themathsgeek8528 2 жыл бұрын
Yes!
@Psi_Fan123
@Psi_Fan123 7 ай бұрын
Yes, phi=1+1/phi then you go "hey look, I can replace that with this!" And then you get phi=1+1/(1+1/phi) then after a while Phi=1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(.........)))))))) Also a neat thing about phi is that phi^2=phi+1, there is another number with this property and it exists because of the equation (x^2)-x-1=0, As when you go and do this you get (1±sqrt(5))/2 and then you get phi=(1+sqrt(5))/2 and the other one that is (1-sqrt(5))/2, because sqrt(5) is bigger than 1, you get that the other number that satisfies x^2=x+1 is actually a negative number
@BigDBrian
@BigDBrian 6 жыл бұрын
when you take 2 = 1 + 2/2 you can also substitute for the 2 in the numerator, creating a fraction tower diagonally upwards. No idea about the uses for this , just seems cool
@PrincessEev
@PrincessEev 6 жыл бұрын
Or even nuttier - substitute it in both the numerator and denominator. :p
@drakkenfan2
@drakkenfan2 Жыл бұрын
And then substitute the fraction for the 2s in the new fractions infinity times
@yoavcarmel1245
@yoavcarmel1245 6 жыл бұрын
because 1+1=2 :)
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Yoav Carmel yes!! That's very important.
@U014B
@U014B 5 жыл бұрын
But did you know that 2 = 1 + 1?
@alejrandom6592
@alejrandom6592 3 жыл бұрын
@@U014B :0
@shivamchouhan5077
@shivamchouhan5077 3 жыл бұрын
@@U014B really, thank you so much bro I didn't know Can you give me a proof
@dhruvtalwar7250
@dhruvtalwar7250 3 жыл бұрын
@@blackpenredpen hey sir, if we equal the given fraction as x we can right 2+ 1/(2+1)....to infinity as x+1 . Then we can simply right the repeating unit as x+1 too . We get the equation x^2 equal to 2 there . Neglecting the negative the answer is root 2 . Is this mathematically correct
@Bidisha_Nath
@Bidisha_Nath 2 жыл бұрын
Really useful... Thanks... From. Assam, India
@dammuraja8010
@dammuraja8010 4 жыл бұрын
Student from india. Lovely explaination sir, enjoyed.😄
@ImKurono
@ImKurono 6 жыл бұрын
Before class started my Calc 3 teacher was talking about this on Wednesday
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Oh cool!!
@NeerajSharmah2c2o4
@NeerajSharmah2c2o4 6 жыл бұрын
It's there a continued fraction for pi?
@stevethecatcouch6532
@stevethecatcouch6532 6 жыл бұрын
Yes, but it's ugly. The continued fraction for phi is much prettier.
@NeerajSharmah2c2o4
@NeerajSharmah2c2o4 6 жыл бұрын
@@stevethecatcouch6532 I know the one for phi.
@ffggddss
@ffggddss 6 жыл бұрын
All true. There are many interesting side roads in this territory. For instance, what if the b's (numerators) are kept at 1, but the a's (denominators) are allowed to be integers of either sign? (Short ans: You get more efficient CF's! Ex: φ = [2; -3,3,-3,3,...] ) Some day, I'm gonna hafta get off my duff and make a video about these fascinating gems myself... Fred
@icespirit
@icespirit 6 жыл бұрын
the one for pi is: [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, ...] (ugly)
@blue_tetris
@blue_tetris 6 жыл бұрын
The continued fraction for pi also doesn't repeat or form patterns. One of the reasons is because it is transcendental (but the proof is fairly complex).
@axbs4863
@axbs4863 2 жыл бұрын
alright heres my work to solve for that continued fraction: 1+(1/(2+1/(2+....) take out that initial (1+) term for now set 1/(2+1/(2+.... = x replace the repeating terms with x to get: x = 1/(2+x) multiply both sides by (2+x) to get x^2 + 2x = 1 subtract by 1 on both sides to get a quadratic; x^2 + 2x - 1 = 0 quadratic formula: x = (-2 +/- sqrt(4+4))/2 simplfiy to get -1 +/- sqrt(8)/2 add that (+1) term back in to cancel out that (-1) term x = sqrt(8)/2 = 2sqrt(2)/2 = *sqrt(2)*
@blackholesun4942
@blackholesun4942 8 ай бұрын
Thanks, this worked nicely and seems to use recursion
@pauselab5569
@pauselab5569 9 ай бұрын
proving that they must converge at a fixed point is insanely difficult. made me learn banach's fixed point theorem.
@jumpman8282
@jumpman8282 Жыл бұрын
This was fun. Especially since I about a week ago saw Virgin Rock's reaction video to Tool's song "Lateralis", whose musical structure is based on the Fibonacci sequence. What I learned from that video is that the ratio between two consecutive Fibonacci numbers approximates the golden ratio and the further down the sequence we go the better the approximation will be. What I managed to figure out is that the "Fibonacci ratio" can be written as the continued fraction 1 + 1/(1 + 1/(1 + ... but I couldn't satisfactorily show that this continued fraction is equal to the golden ratio, i.e., (1 + √5)/2. But then this video popped up in my feed and it painfully dawned on me that all I needed to do was to write (1 + √5)/2 as a continued fraction.
@chriswebster24
@chriswebster24 Жыл бұрын
In the past, apparently, this man proved that the square root of 2 is irrational. That's how I know he's very wise.
@borisburd2951
@borisburd2951 5 жыл бұрын
i dont know why but the continued fraction of sqrt of 2 made me laugh haha its so elegant
@Goku17yen
@Goku17yen 6 жыл бұрын
seems very similar to the thing you see when first introduced to series, where you add together the infinite sum of a repeated decimal or something of that sort :D
@Eternap
@Eternap 6 жыл бұрын
Goku??Even you can understand this?! :p
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Of course, he is a super saiyan!
@Goku17yen
@Goku17yen 6 жыл бұрын
Eternal Entity lmao
@alan2here
@alan2here 6 жыл бұрын
Greatest compositing ever :)
@heribertobarahona7695
@heribertobarahona7695 6 жыл бұрын
Continued Fractions are so fun especially with irrational numbers!!! I just Log in to Brilliant, looks like an awesome page!!!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
I like CFs a lot too!! Just really hard to write it neatly tho. : )
@heribertobarahona7695
@heribertobarahona7695 6 жыл бұрын
Yeah!! You're totally right in that aspect.
@adamhrankowski1298
@adamhrankowski1298 6 жыл бұрын
How about changing the numerator 2's as well?
@МаксимФролов-о4ц
@МаксимФролов-о4ц 4 жыл бұрын
This video made my day!
@yuval2be
@yuval2be 6 жыл бұрын
I read more about continued fractions, especially infinite contined fractions. But I didn't understand how to find the value of a given infinite continued fraction with known sequence. For example: [1,2,3,4...] or [1,4,9,16,25,36...]. If there is a known sequence does it mean the value is algebric number? I understood that because "pi" is Transcendental number there is not a pattern for the continued fraction.
@colejohnson66
@colejohnson66 4 жыл бұрын
e is transcendental as well, but it does have a recognizable pattern: [2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...] After the first 2, it begins going [1,2n,1] (every second term in the group of three is two more than the last group’s second term)
@jacoboribilik3253
@jacoboribilik3253 6 жыл бұрын
Great math channel, im so glad to have come across it.
@jagrutivispute7600
@jagrutivispute7600 4 жыл бұрын
Thank you so much before I wasn't knowing how to turn a fraction into the continuous fraction form but after watching video now I come to know thank you again
@jihyepark9139
@jihyepark9139 4 жыл бұрын
Wow, I love it.
@rajatmeena7341
@rajatmeena7341 6 жыл бұрын
That's great
@hossamabdulsalam1514
@hossamabdulsalam1514 6 жыл бұрын
Sir, Please solve this problem. 3^(cot(x))^2 = 9*sin(x)*cos(x) Find the values of x. Many time I wrote this problem 🙏🙏
@AccuphaseMan
@AccuphaseMan 5 жыл бұрын
if you can't solve a problem that easy, i feel sorry for you
@devanshtripathi7879
@devanshtripathi7879 2 жыл бұрын
@@AccuphaseMan ohhh if thats the case write solution then flex off if u cant then shut up and move on
@mrocto329
@mrocto329 2 жыл бұрын
@@AccuphaseMan haven't solved it yet? It's been 2 years kid, I'm starting to feel sorry for YOU
@Patapom3
@Patapom3 6 жыл бұрын
Great! Would have loved to see Phi developed as a continued fraction as well...
@maxfraguas
@maxfraguas 2 жыл бұрын
Thank you very much!
@jonathanaguillon5701
@jonathanaguillon5701 7 ай бұрын
You know, that stuff (continued fraction) is the initial algorithm to help me find new set of gear, it is vital to detemine the number of teeth of drive and driven gear.
@danieltiema
@danieltiema 3 жыл бұрын
Very helpful, thankyou...
@BeltranAmenabar
@BeltranAmenabar 6 жыл бұрын
Can you make a video about simplifying continued fractions to get the original number back?
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Beltrán Amenábar yup. That will be my future videos.
@BeltranAmenabar
@BeltranAmenabar 6 жыл бұрын
blackpenredpen Yay!!
@arnavtripathi273
@arnavtripathi273 Жыл бұрын
I did it another way by adding 1 on both sides of eqn then we get x+1 = 2 + 1/(2+1/2.......... If we write it like x+1 = 2+ 1/(x+1) ... solving for x we'll get x=±√2 and we can also conclude that the result will be positive since all stuff that's being added is positive.
@RaphaelFassy
@RaphaelFassy 4 жыл бұрын
Great video!
@MercenarySmash
@MercenarySmash 6 жыл бұрын
Dang looking good with that fresh haircut
@VIJAYSWARUP
@VIJAYSWARUP 5 жыл бұрын
Can you make an infinite continued fraction video for pi ?
@danielevanzan4340
@danielevanzan4340 4 жыл бұрын
I think this is amazing
@AngeloLaCruz
@AngeloLaCruz 6 жыл бұрын
Love this ONE !!!!
@takyc7883
@takyc7883 4 жыл бұрын
This was actually such a fun video lol
@snuffles7222
@snuffles7222 6 жыл бұрын
absolute awsome!
@yaakoubfarah413
@yaakoubfarah413 5 жыл бұрын
Thank you!
@SuperYoonHo
@SuperYoonHo 2 жыл бұрын
awesome!
@sawyerandrobbie
@sawyerandrobbie 3 жыл бұрын
Super interesting
@renatoshigueto9291
@renatoshigueto9291 5 жыл бұрын
Thanks man, i was have a difficult problem for understand this and now.. i get it, thanks
@flamingpaper7751
@flamingpaper7751 6 жыл бұрын
What about a continued fraction for functions, such as x/ln(x/ln(x/...))?
@icespirit
@icespirit 6 жыл бұрын
then x would have to be bigger than infinity (I think)
@ThePianofreaky
@ThePianofreaky 6 жыл бұрын
If you call the whole thing y, you can rewrite it as y = x/ln(y) . Now, solve for y. y * ln(y) = x ln(y^y) = x y^y = e^x y is the super root of e^x. That's how you can solve these problems in general.
@icespirit
@icespirit 6 жыл бұрын
sorry i was sleepy and i didnt want to think :p
@brainlessbot3699
@brainlessbot3699 6 жыл бұрын
@@ThePianofreaky does it converge for every value of x?
@That_One_Guy...
@That_One_Guy... 5 жыл бұрын
Actually continued fraction also appear at polynomial division (when the denominator is higher degree than the remainder)
@yeshasp.rangayeshu217
@yeshasp.rangayeshu217 6 жыл бұрын
Awesome grt video I really loved it
@janv.8538
@janv.8538 5 жыл бұрын
8:55 cant you plug in this term on the top of the fraction, which would make it infinetely complicated?
@mountainc1027
@mountainc1027 5 жыл бұрын
Oh my god it looks like the one shown in the video but "reflected" in the x-direction
@amirparsi4165
@amirparsi4165 5 жыл бұрын
Looking sharp
@moshadj
@moshadj 5 жыл бұрын
So for the last example of the continued fraction of 2 you can also use the relation for 2 on the numerator as well.
@jcb3393
@jcb3393 4 жыл бұрын
But then that just reverts back to a series in the numerator and the same series in the denominator, which is x/x which is 1. So we are back to 1+1=2.
@rongzhang9283
@rongzhang9283 4 жыл бұрын
your big help
@JoseFernandez-wt2ud
@JoseFernandez-wt2ud 6 жыл бұрын
Nice!
@toferg.8264
@toferg.8264 6 жыл бұрын
Thanks!
@aymanabdellatief1572
@aymanabdellatief1572 5 жыл бұрын
Do you have similar patterns for sqrt(3) , sqrt(5), and other irrational square roots? What about cube roots and higher order roots?
@Debg91
@Debg91 6 жыл бұрын
Nice jacket! True gentlemath 😉
@danielbenyair300
@danielbenyair300 6 жыл бұрын
6:33 the silver ratio equal to 1+sqrt2 Note: the ... at the end is wrong!! There has to be sqrt2 at the end!!!
@morgengabe1
@morgengabe1 6 жыл бұрын
I feel like it's circular to define number with a continued fraction that contains it, no? Is that appropriate? this is my first real experience with them. Sorry for silly questions.
@deusvult5738
@deusvult5738 5 жыл бұрын
Well, it's more like a series. Has stuff to do with limits
@dr.rahulgupta7573
@dr.rahulgupta7573 3 жыл бұрын
Very good explanation green pen blue pen red pen ( gp bprp) .Thanks . DrRahul Rohtak Haryana India
@Spectrojamz
@Spectrojamz 4 жыл бұрын
6:18. How many times do you want me to do this; seriously I don't know🤣😂😂
@YorangeJuice
@YorangeJuice 3 жыл бұрын
Cool vid
@ShaniYadav-dk1ns
@ShaniYadav-dk1ns 5 жыл бұрын
Nice sir
@hamsterdam1942
@hamsterdam1942 6 жыл бұрын
8:40 that's pretty much eat? What do you mean?
@sandhinfk
@sandhinfk 6 жыл бұрын
If you just cut the video part and keep the audio part, you can make a 10 hour video on “I see this square root of 2, then i can put this into that, ......., now I see this square root of 2 again, then i can put this into that again............”
@sreejithunni3267
@sreejithunni3267 6 жыл бұрын
I love mathematics and you..😘😘😘😘
@jcb3393
@jcb3393 4 жыл бұрын
It's neat and all, but is there any practical application for continued fractions, infinite or otherwise?
@danmccarron0
@danmccarron0 4 жыл бұрын
the answer is yes. the fact that it terminates after finite number of iterations for rational numbers is a perfect way to test for closure of a subset of the infinite group of elements obeying this property and that could correspond to something physically real, like, say, the number of accessible states of the system of discrete energy levels (a behavior of quantum mechanics) or something like that. or it could demonstrate how many times you have to shuffle a certain set of elements before you get back what you started with. Only elements whose values are integer or fractional numbers will return back to the starting point and that is determined specifically by the number of times you can iterate a continued fraction. I'm sure there are plenty of applications other than this but these come to mind.
@vector8310
@vector8310 11 ай бұрын
Yours is a first-rate reply.
@fCauneau
@fCauneau 6 жыл бұрын
May look tricky for math lovers, but the paradox is that it makes some of the structure of numbers accessible for people who only know in arithmetics...
@kingbeauregard
@kingbeauregard 6 жыл бұрын
Continued fractions are cool, and are a good way to find rational approximations for numbers with lots of decimal places. Using continued fractions, even an oaf like me was able to independently derive that 355/113 is a freakishly good approximation for pi (3.1415929 instead of 3.1415927). 355/113 is easy to remember, by the way, if you think denominator and then numerator: one one three three five five.
@sanchitkumar6550
@sanchitkumar6550 8 ай бұрын
What is the source from where this topic has been taken
@drjagtarsingh3498
@drjagtarsingh3498 5 жыл бұрын
Nice
@SuperDeadparrot
@SuperDeadparrot Жыл бұрын
How would you take a derivative of a continued fraction?
@SuperDeadparrot
@SuperDeadparrot Жыл бұрын
Is the representation unique?
@dmavbchy
@dmavbchy 3 жыл бұрын
Given a continued fraction, how I deduce what number/function is it?
@ישראלורטהימר
@ישראלורטהימר 2 жыл бұрын
I have a question you say that because 2=1+(2/1+(2/1+... have 2 on the up size it is not a irr so I can do the following 2= 1+1=1+2/2=1+1/2/2 2=1+1/2/2-------------------------------------------------------^ 2=1+1/((1+1/2/2)/2) and then you have the ones on the top. so what i got wrong
@ffggddss
@ffggddss 6 жыл бұрын
Thanks! CFs are a pet topic of mine. This video should help raise interest in them; it is very basic, and right away leads any inquisitive mind to ask a myriad of other questions. _So like a siren, drawing in all unwary sailors to her lair..._ Fred
@vector8310
@vector8310 11 ай бұрын
Great comment! I actually purchased Oskar Perron's German language Die Lehrer von den Kettenbruchen because I've caught the continued fraction bug.
@adamoksiuta4715
@adamoksiuta4715 4 жыл бұрын
Do you know what is result of infinite continued fraction when you have only ones (1)? :P
@m4nde
@m4nde 3 жыл бұрын
it’s the golden ratio 1.618033… (phi) 1/phi + 1 = phi x = 1+1/(1+1/(1+1/(1+…) 1/x + 1= x (:
@adamoksiuta4715
@adamoksiuta4715 3 жыл бұрын
@@m4nde Correct :)
@lukecox6317
@lukecox6317 6 жыл бұрын
Correct me if I am wrong, but the expansion of 2, if we assumed we don't know the answer, we could write that as x = 1+(2/x), which has two answers, one which is 2 and the other -1?
@jimjam1948
@jimjam1948 6 жыл бұрын
Hey bprp can you discuss the erdos-straus thereom next. The theory behind it is pretty simple and easy to understand even for young children. Pleaseeeeèe
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Ok, I will try! I have many things planned already (such as the Goldbach's Conjecture) but that is certainly an interesting one too! Thanks!
@jimjam1948
@jimjam1948 6 жыл бұрын
@@blackpenredpen yesss that's great
@donwald3436
@donwald3436 3 жыл бұрын
7:37 You're not supposed to use white-out on your monitor.
@himanshumallick2269
@himanshumallick2269 6 жыл бұрын
Turns out that continued fractions are important for Pell's Equation. The Pell's Equation rearranges to (x/y)^2=(d)+O(1/y^2) Where d is not a perfect square. So, taking the rational approximations of √d (via continued fractions) gives solutions for x and y in integers. _(This method was due to Ramanujan)_
@johnny_eth
@johnny_eth 4 жыл бұрын
How would you build the fraction for pi ?
@star_ms
@star_ms 2 жыл бұрын
Can all algebraic irrationals be written as infinite CFs?
@snejpu2508
@snejpu2508 6 жыл бұрын
YAY!!!
@samarthsai9530
@samarthsai9530 6 жыл бұрын
I don't know why but I can smell some metallic ratios. #festive season
@_DD_15
@_DD_15 6 жыл бұрын
You need to do more of these. Continued fractions are such a wonderful subject and they are always neglected. Do pi, that one is fun 😛
@canaDavid1
@canaDavid1 4 жыл бұрын
Okay, Integer = continued fraction with 1 term Rational = continued fraction with finite terms Algebraic = infinite fraction, but repeating numbers Transcendental = infinite fraction, not repeating Is this correct?
@mrgreenskypiano
@mrgreenskypiano 2 жыл бұрын
No, one of pi's continued fractions has repeating terms or a pattern of terms
@canaDavid1
@canaDavid1 2 жыл бұрын
@@mrgreenskypiano which one?
@canaDavid1
@canaDavid1 2 жыл бұрын
@@mrgreenskypiano also, i was referring to the continued fractions with 1 as all numerators
@mrgreenskypiano
@mrgreenskypiano 2 жыл бұрын
@@canaDavid1 Ah, ok, it isn't a simple cf
@nellvincervantes3223
@nellvincervantes3223 5 жыл бұрын
Physics? Mechanical vibration? Can you explain it pls?
@ethanchandler3934
@ethanchandler3934 3 жыл бұрын
Cant we say 2 is irrational since it can be written as an infinite fraction?😂
@sam.asdfjkl
@sam.asdfjkl 3 ай бұрын
They proposed a wrong theory if it's infinite continues its irrational? Lol
@gocrazy432
@gocrazy432 5 жыл бұрын
The problem with the sqrt2 continued fraction is you don't have to go past the point you wrote it in the denominator any more than you don't have to complete ramanujans sum of infinite nested rooted perfect squares. We already knew sqrt2 doesn't terminate. It doesn't matter that that the fractions continue infinitely as even rational numbers have infinite decimal notations and see ramanujan finite AND infinite representation of an integer. That didn't really prove anything.
@shubhampaswan3286
@shubhampaswan3286 3 жыл бұрын
Greenpenredpen :-) Yay ...
@breakzxz648
@breakzxz648 6 жыл бұрын
since sqrt root of 2 is equal to (1 + sqrt of 2 -1) then u cannot multiply (sqrt of 2 - 1) only thats my opinion correct me if im wrong, its still cool though getting that infinite sequence 👍
@antimatter2376
@antimatter2376 6 жыл бұрын
If you divide it by the same thing, it's ok
@GeodesicBruh
@GeodesicBruh 5 жыл бұрын
Lol that 2 at 6:37
@jihyepark9139
@jihyepark9139 4 жыл бұрын
He talks like my Math Teacher in highschool.
@MathIguess
@MathIguess 5 жыл бұрын
I wanted you to do it 100 times :(
@2tri749
@2tri749 6 жыл бұрын
0:00 hmm... *BRILLIANT* #blackPENredPEN #YAY
@Qermaq
@Qermaq Жыл бұрын
Rather than "simplify" the objective is "obfuscate".
@alexismandelias
@alexismandelias 6 жыл бұрын
What about continued fraction for e?
@mrkosmos9421
@mrkosmos9421 6 жыл бұрын
* Ability to solve continued fractions acquired *
@Rekko82
@Rekko82 6 жыл бұрын
0 = 0 /1 = 0/(1+0/1) = 0/(1+0/(1+0/1)) or something like that.
@yoavcarmel1245
@yoavcarmel1245 6 жыл бұрын
not simple tho :)
@urvpatel829
@urvpatel829 5 жыл бұрын
Hey I'm 😀from India but why I enjoy your lecture (I don't know)
@11.anoodaygoswami74
@11.anoodaygoswami74 2 жыл бұрын
Srinivasa ramanujan ❤️
@CharIie83
@CharIie83 4 жыл бұрын
wont the value change as you go down the ladder of fractions? I know the numbers stay the same, but the values are changing, or?
@inakibolivar664
@inakibolivar664 4 жыл бұрын
No, they don’t change at any point
@toufik9632
@toufik9632 3 жыл бұрын
A=2 A-2=0 (A-2)(A+3)=0 A²+A-6=0 A(A+1)=6 A=(6/A)-1 And repeat and repeat😅
@Jom1331
@Jom1331 5 жыл бұрын
2 = 1/1/2 And you can repear it forever
inf^0 is indeterminate
13:48
blackpenredpen
Рет қаралды 43 М.
Continued Fraction Arithmetic
23:19
TheGrayCuber
Рет қаралды 12 М.
“Don’t stop the chances.”
00:44
ISSEI / いっせい
Рет қаралды 62 МЛН
IL'HAN - Qalqam | Official Music Video
03:17
Ilhan Ihsanov
Рет қаралды 700 М.
Infinite fractions and the most irrational number
13:29
Mathologer
Рет қаралды 628 М.
so you want a VERY HARD math question?!
13:51
blackpenredpen
Рет қаралды 1 МЛН
We must do this do this carefully!
11:59
blackpenredpen
Рет қаралды 304 М.
what fractions dream of
15:34
Michael Penn
Рет қаралды 56 М.
Solving x^5=1
9:49
blackpenredpen
Рет қаралды 183 М.
Infinite Fractions - Numberphile
6:37
Numberphile
Рет қаралды 424 М.
Arithmetic With... Continued Fractions?? #SoME2
22:55
Ally Streetcars & Things
Рет қаралды 16 М.
Simplify Complex Fractions Step by Step
11:14
Brian McLogan
Рет қаралды 7 М.
2024's Biggest Breakthroughs in Math
15:13
Quanta Magazine
Рет қаралды 575 М.
A Brilliant Limit
16:58
blackpenredpen
Рет қаралды 1,4 МЛН