Es gab bis jetzt kein einziges Video von dir, wo ich dachte "ich verstehe nur Bahnhof" ! Wirklich TOP TOP TOP Erklärvideos!! Besser gehts nicht!
@nobodyyy63164 жыл бұрын
Kannst du bitte ein Video zu Abbildungen machen und wie man diese beweist ? ( injektiv, surjektiv & bijektiv).
@Scorpion2321-o9o19 күн бұрын
injektiv hat sie hier sehr gut erklärt, also wenn f(x1) = f(x2) gilt, also wenn der y wert von beiden x1,x2 gleich sind, MUSS x1 gleich sein wie x2, weil wenn sie nicht gleich sind, gibt es zwei x die gleiches y-wert haben, und das ist wie sie im Graph gezeigt hat nicht möglich wenn es injektiv sein soll. wie im video müssen wir f(x1) = f(x2) machen, sagen wir f wäre x^2 wie bei 1:34, dann hätten wir x1^2 = x2^2 und um auf x umzuformen müssen wir wurzel ziehen, und wurzel hat positive und negative werte, also kann x1 negativ oder positiv sein, x2 kann auch negativ oder positiv sein, also gilt x1 = x2 nicht es kann ja x1 = x2 sein, -x1 = -x2 oder x1 = -x2, und mehrere zustände sind laut definition x1 = x2 nicht möglich also ist x^2 nicht injektiv
@HerrZeus2 жыл бұрын
hundert mal verständlicher gemacht in 10 minuten als mein professor in 2 stunden, vielen dank!
@MathemaTrick2 жыл бұрын
Super, freut mich, dass ich dir weiterhelfen konnte! ☺️
@SophiexMarie Жыл бұрын
Ich bin so dankbar für deine Videos! Du erklärst wirklich ganz toll und sehr verständlich
@MathemaTrick Жыл бұрын
Dankeschön Sophie, das freut mich sehr!
@thisguy92793 жыл бұрын
Besser erklärt, als der Typ den ich vorhergeschaut habe! Top!
@MathemaTrick3 жыл бұрын
Danke dir, das freut mich zu hören! Welcher “Typ” war das denn vorher? 😄
@issactv68498 ай бұрын
@@MathemaTrick wahrscheinlich der Mathe-Prof
@TheKampfmaschine3 жыл бұрын
Heute gefunden und ich kann jetzt schon sagen, dass ich dir den Großteil meines Studienerfolgs zu verdanken haben werde.
@MathemaTrick3 жыл бұрын
Würde mich sehr freuen ein Teil deines erfolgreich absolvierten Studiums zu werden! 🥳
@cokmehmetvar3 жыл бұрын
Seit wann gibt es diesen Kanal xD. Ich habe alles so schnell so gut verstanden dankesehr! Dacht Daniel Jung ist der einzige auf KZbin der mir weiterhelfen kann, aber jetzt hat er anscheinend Konkurrenz :D
@MathemaTrick3 жыл бұрын
Das freut mich total! Herzlich Willkommen! Mein Kanal ist schon ein paar Jahre alt, aber seit 9 Monaten bin ich hier täglich mit neuen Videos aktiv. Hoffe es ist noch mehr für dich drauf zu finden.
@jan-niklasb.72658 ай бұрын
Vielen Dank für dieses Video, wie man den Beweis führt, war die Info die mir aus den Unterlagen der uni gefehlt hat👍
@mahmuteminaydn58093 жыл бұрын
Echt gutes Video hab’s wirklich verstanden nach deinem Video. Könntest du vielleicht das gleiche in gleicher Länge für die Surjektivität machen? Wäre echt nett. Aber tolles Video 😊
@maggy7563 жыл бұрын
Danke für die super Erklärung!! Ich schreibe morgen Mathe Klausur und man findet kaum verständliche Erklärungen zu dem Thema (ich bin in der 11. Klasse), abee jetzt habe ich es einigermaßen verstanden!! Danke nochmal :)
@MathemaTrick3 жыл бұрын
Super, das freut mich riesig! 🥰 Dann wünsche ich dir ganz viel Erfolg bei der Klausur morgen, ich glaube an dich! :)
@nicolaynieden69372 жыл бұрын
Hätte es Dich zur Zeit meiner Grundvorlesungen schon gegeben...wäre ich damals nicht so verwirrt gewesen...es wurde wirklich nur mit dieser Quantorenlogik argumentiert ohne mal wie Du es tust, mal eine Anschauung zu präsentieren...auch der damalige Tutor schwebte nur in den höheren algebraischen und analytischen Sphären🤪🤩😘😘😘
@Lotschi9 ай бұрын
Ich tue mir ohne intuitive Vorstellung auch immer echt schwer. Unser Prof schafft das auch nicht wirklich gut zu veranschaulichen. Ich habe nach einem Semester wirklich gemerkt wie wichtig Tutoren sind und man da einfach den passenden Tutor für sich finden muss.
@MethodWive2 жыл бұрын
Abartig gut erklärt 💯 danke vielmals. Gibt es auch ein Video für den formellen Beweis von surjektivität?
@emmy5163 Жыл бұрын
Bei Surjektivität muss der ganze Wertebereich getroffen werden. Es hilft viel, wenn du weißt, wie die Funktion aussieht. Die Beispiele aus dem Video: f:R->R x->x^2 ist nicht surjektiv. Das liegt daran, dass der Scheitelpunkt bei (0|0) liegt und alles darunter nicht getroffen wird. Du brauchst ein Gegenbeispiel. Z.B. Setze x^2=-1 Die Gleichung ist in deinem Definitionsbereich R nicht lösbar, also gibt es für -1 Element R kein y Element R. Um Surjektivitität zu beweisen, musst du dir ein x setzten. Beispiel: g:R->R, x->4x Die zu erfüllende Bedingungung lautet Für alle y Element R gibt es mindestens ein x Element x, sodass g(x)=y Nebenrechnung, um das x zu finden: y=4x nach x umstellen => x=y/4 Beweis: Sei y Element R. Setze x:=y/4 Dann gilt f(x)=4*(y/4)=y und damit hast du es bewiesen. Hoffe, ich konnte helfen
@emmy5163 Жыл бұрын
Natürlich mit g, sorry
@geraldinefunk697510 ай бұрын
@@emmy5163 Hey, danke für deine Erklärung. Ich muss mich gerade auch mit dem Thema auseinandersetzen und verstehe leider nur nicht, wie man die Injektivität für verschiedene Zahlenbereiche nachweist. Das Beispiel f(x)= x^2 ist ja nur in den natürlichen Zahlen injektiv, in anderen Zahlenbereichen nicht mehr. Aber wie weist man das nach? Wenn ich f(x1) = f(x2) gleichsetze, kommt man doch am Ende immer auf x1 = x2. Ich hoffe, du kannst mir weiterhelfen :)
@emmy516310 ай бұрын
Moin, also nehmen wir mal x^2 als Beispiel. Du musst immer auf den Definitionsbereich für Injektivität achten. f:R->R: f(x)=x^2 ist nicht injektiv. Da nimmst du dir ein Gegenbeispiel Das heißtbdu zeigst, dass du für gleiche f(x) unterschiedliche x findest. Der Beweis würde lauten: Sei f:R->R mit f(x)=x^2 gegeben. Setze f(x1)=f(x2)=1. Dann gilt 1^2=1=(-1)^2, aber 1=|=-1, also f nicht injektiv Schränkst du den Definitionsbereich aber auf R größer gleich 0 ein, guckst du dir ja nur den positiven Teil an, also -1 liegt nicht im Definitionsbereich. Dann hast du f(x1)=f(x2) x1^2=x2^2 da x größer gleich 0, kannst du die Wurzel ziehen und dann steht da x1=x2, also f injektiv. Guck dir die Definitionsbereiche an und wie du entsprechende Operationen umkehrst und ob sie für deinen Bereich definiert sind. Das ist dein erster Garant, um sicherzugehen, ansonsten kann ich dir empfehlen, den Graph zu zeichnen. Wenn zwei x-Werte den gleichen y-Wert haben, dann ist da dein Gegenbeispiel
@Lotschi9 ай бұрын
@@emmy5163super erklärt!
@Yokazar3 жыл бұрын
Einfach toll erklärt! Danke !! 🥰
@MathemaTrick3 жыл бұрын
Super, freut mich! 😊
@CasimirPopdusimir Жыл бұрын
Toll erklärt. Danke.
@op-uj5hp3 жыл бұрын
Tolles Video! Habe das nicht ganz verstanden in meiner Vorlesung, aber bei dir direkt, danke. Und ich habe gesehen , dass du sogar weitere Videos hast, die fast meine ganzen Vorlesungen widerspiegeln. Ab jetzt nur noch deine Videos haha ;)
@MathemaTrick3 жыл бұрын
Haha, das freut mich sehr! 😜Na dann weiterhin ganz viel Erfolg beim Studium! Was studierst du denn? 😊
@op-uj5hp3 жыл бұрын
@@MathemaTrick Danke !! Ich studiere Informatik 🤯
@awatmarouf4 жыл бұрын
Ich hoffe nächste mal an surjektiv und bijektiv paar Beispiele geben wird vielen Dank
@MathemaTrick4 жыл бұрын
Ja ich mache erst einzelne Videos zu injektiv und surjektiv und dann noch eins in dem wir alles zusammen untersuchen.
@terezacervenova59422 жыл бұрын
Oh, das hat mir richtig geholfen, vielen Dank❤️
@Konan741-e4n4 жыл бұрын
Sehr Informatives Video, vielen vielen Dank. Ich komme ehrlich gesagt mit diesem Thema nicht klar aber jetzt ist ist besser geworden, und es wäre nett von Ihnen uns zu zeigen wie man bestimmen kann, wann eine Funktion Surjektiv, Injektiv oder Bijektiv ist denn es gibt Funktionen wie; f(x) = x^4+4x^2-(wurzel von x - 1) oder irgendwelche Funktionen, die mir gar nicht klar sind, ob sie S, I, B sind und natürlich auch die Methode Wie man sie bestimmt. Dankescön nochmals👍
@ErfanMahmoudi-ff8fd2 ай бұрын
die beste Mathelehrerin der Welt
@lukaskrall53183 жыл бұрын
WOW. Das ergibt Sinn XD. Danke für die super Erklärung. :)
@computer_gai11 ай бұрын
ich finde das Video sehr hilfreich
@utedalheimer17424 жыл бұрын
Dankeschön 💜
@Brachiales6.17 ай бұрын
Du erklärst das zugänglicher als mein Prof
@anzorgreenАй бұрын
Danke dir!
@MathemaTrickАй бұрын
Gerne :)
@fuchur56bekannt923 жыл бұрын
Danke 👍
@swelvendom3 жыл бұрын
Danke!!!! ❤️
@MathemaTrick3 жыл бұрын
Gerne! 😊
@ceooftodumb-4503 жыл бұрын
Danke für das super verständliche Video. Könntest du mal was zu komplexeren Aufgaben der Art machen? Ich verstehe zb nicht wie ich das prüfen soll, wenn mir pi((x-y)) = (x, 0) gegeben wird
@Migui078 Жыл бұрын
vielen dank noch mal bitte kannst du mir sagen ob man die zweite Methode mit allen Funktionen verwenden kann?
@mohaammadsadat60513 жыл бұрын
Danke
@marenluisa16203 жыл бұрын
DANKE DANKE DANKE
@MathemaTrick3 жыл бұрын
Sehr gerne! :)
@littlefico Жыл бұрын
ich habe eine frage zum beweis ab 6:27. wenn ich nun deine vorige, NICHT injektive, funktion x^2 hernehme und genau so mache, dann steht am ende ja +/- x1=+/- x2. oder ist genau dieser umstand, dass +/- bei beiden seiten davor steht die tatsache, dass es NICHT injektiv ist? ich hoffe ich habe meine frage präzise genug gestellt. danke im voraus
@elisabethcoly29073 жыл бұрын
Danke!!!:D
@MathemaTrick3 жыл бұрын
Gern :)
@mmdh6293 жыл бұрын
Hast du auch ein Video zur Surjektivität?
@MathemaTrick3 жыл бұрын
Leider nur ein altes, aber vielleicht hilft dir das ja trotzdem ein bisschen: kzbin.info/www/bejne/f2aUiIeMo7-djMk
@mmdh6293 жыл бұрын
@@MathemaTrick egal, Hauptsache du erklärst♥️
@MathemaTrick3 жыл бұрын
Das ist lieb von dir, aber bei meinen alten Videos war ich echt noch nicht so gut. 😅 Aber manche helfen trotzdem, deswegen lasse ich sie online.
@mmdh6293 жыл бұрын
@@MathemaTrick ja mir hat es zum Beispiel geholfen haha, studiere Wirtschaftsinformatik und brauche den stoff gerade… du hast mir sehr geholfen wirklich🙏
@fibsonbar15152 жыл бұрын
Hast du noch ein Video zur binjektivitat und survjektivität?
@loolipoop55308 ай бұрын
Was ich gerade nicht verstehe, wenn ich die Formel nach x1=x2 umstelle, was habe ich dann bewiesen? Wenn ich auf beiden Seiten die gleiche Funktion habe komme ich doch immer durch irgendwie Umformen dahin? Eine Formel aus meinen Unterlagen konnte ich nach x1=x2 umstellen, womit die Funktion ja injektiv sein müsste, aber laut der Lösung ist die Funktion nicht injektiv, was sie auch tatsächlich nicht ist. Oder gilt das nur für die Definitionsmenge aus allen Reellen Zahlen?
@flow20357 ай бұрын
Wenn du (X1)^2 = (X2)^ gleichsetzt kommt nicht X1 = X2 raus, sondern +-X1 = +- X2, damit könnte dann auch -X1 = X2 gelten und das ist falsch
@loolipoop55307 ай бұрын
@@flow2035 okay, Danke für die Erklärung.
@Digitalislanate2 жыл бұрын
Injektiv und Surjektiv verwechsle ich immer! Wie merkt man sich das? Ich möchte allerdings bemerken, dass beide Funktionen (also x ----> x² und x ---> 3x+4) sogar [Wenn wir die R+ Definition hernehmen] bijektiv sind. Aus der Bijektivität folgt die Injektivität.
@emmy5163 Жыл бұрын
Es kommt immer auf den Definitions- und Wertebereich an, ob eine Funktion bijektiv ist. So wie in dem Video mit f:R+->R ist f injektiv, aber nicht surjektiv, da (0|0) der Tiefpunkt ist, alles darunter wird nicht getroffen. Bijektiv heißt injektiv und surjektiv
@PainGain123 жыл бұрын
Ist das axiomatisches Beweisen?
@leeres.blattleerzeichen96313 жыл бұрын
Okay. Aber wenn für x --> x² keine Injektivität gilt und ich folgendes mache: x1² = x2² Dann kann ich ja auch einfach die Wurzel ziehen und erhalte: x1 = x2 und somit wäre Injektivität bewiesen. Wahrscheinlich ist es aber nicht so, weißt du wo mein Denkfehler liegt? :D
@levante18392 жыл бұрын
dann erhälst du mit x=4 ja z.B auch -2 = 2 und das ist ja falsch
@FlockeDerBoss3 жыл бұрын
6:52 Wenn ich eh immer x1 und x2 einsetze und das nicht konkrete Elemente, kommt doch immer f(x1) = f(x2) raus?! Die Funktion ist doch unverändert?! Was wäre denn sonst ein Beispiel für eine nicht injektive Funktion? Mein Tutor hat uns übrigens heute erklärt (bzw. versucht zu erklären - sonst wäre ich nicht hier^^), man solle konkrete Elemente einsetzen...?! Nun bin ich gänzlich verwirrt.
@MathemaTrick3 жыл бұрын
Hey Florian, genau, um zu zeigen, dass eine Funktion *nicht* injektiv ist, reicht es ein Gegenbeispiel zu finden. Denn z.b. für f(x)=x² ist f(-2) dasselbe wie f(2), nämlich 4, aber 2 ist eben *nicht* dasselbe wie -2. Hilft dir das? 😊
@FlockeDerBoss3 жыл бұрын
@@MathemaTrick Jaein, also dass ich beim Beweis, dass eine Funktion NICHT injektiv ist, ein Gegenbeispiel mit konkreten Zahlen nutzen kann ist schonmal gut - danke! Für den Beweis, DASS eine Funktion injektiv ist, verstehe ich allerdings nicht wieso ich einfach x1 und x2 einsetzen kann. Die Funktion wird doch immer gleich sein - egal wie sie aussieht?!
@nicoheizmann80743 жыл бұрын
@@FlockeDerBoss habe das gleiche Problem.. wenn ich zwei Elemente aus der Definitionsmenge einsetze und dann gleichsetze, MUSS ich doch, egal ob die Funktion injektiv ist oder nicht, immer x1 = x2 erhalten, oder nicht?
@MathemaTrick3 жыл бұрын
Hey ihr zwei, da muss man ganz vorsichtig sein bei den Umformungen und überlegen, ob die Umformungen tatsächlich für *alle* x1 und x2 gelten. Wenn ihr z.b. die Funktion f(x)=x² auf den reellen Zahlen auf Injektivität untersucht, dann wisst ihr ja, dass diese Funktion *nicht* injektiv ist. Aber sagen wir mal wir wissen das nicht und probieren die Injektivität zu beweisen. Dann startet ihr so: (x1)² = (x2)² Normalerweise würdet ihr jetzt einfach die Wurzel ziehen und dann steht da x1=x2. Aber Vorsicht! Das könnten auch negative Zahlen sein, da hier alle reellen Zahlen zugelassen waren. Deswegen darf man eben nicht einfach die Wurzel ziehen und es steht nicht direkt x1=x2 da. Bei vielen anderen Beispielen habt ihr aber schon Recht, dass die Injektivität grundsätzlich relativ einfach zu beweisen ist. Aber wie gesagt, das ist nur der Fall, wenn eure Umformungen auch wirklich für *alle* x aus eurer Definitionsmenge gelten.
@nicoheizmann80743 жыл бұрын
@@MathemaTrick vielen Dank! Hieße das, dass ich, sobald ich durch eines der x teilen *muss*, um auf die besagte Form zu kommen, und nicht garantieren kann dass ich damit nicht eventuell auch durch 0 teile, eigentlich im Umkehrschluss weiß, dass die Funktion eben NICHT injektiv ist?
@fflecker3 жыл бұрын
Gibt es auch etwas zu Fourier-Analyse ? Ich würde gerne eine Funktion erstellen, die durch vorgegebene Punkte in der Ebene verläuft.
@abc.1728 Жыл бұрын
@MathemaTrick Wie beweise ich bei 4(x-1)^2 -2 R -> R ohne Gegenbeispeil, dass sie nicht injektiv ist? Aus 4(x1-1)^2 -2 = 4(x2-1)^2 -2 folgt (x1)^2 -2(x1) = (x2)^2 -2(x2) Bin ich hier fertig? Wie muss ich hier weiter vorgehen?
@emmy5163 Жыл бұрын
Ich würde die Funktion erstmal umschreiben und wenn du Injektivität widerlegen möchtest, immer Gegenbeispiel, das liegt amün den Quantoren, wenn es für alle gelten soll, du aber ein x findest, das es nicht erfüllt, geht es nicht für alle und du bist fertig. 4(x-1)^2-2=4(x^2-2x+1)-2=4x^2-8x+2 Setze f(x1)=f(x2)=2 4(x-1)^2-2=2 4(x-1)^2=4 (x-1)^2=1 x-1=1 v x-1=-1 x=2 v x=0 Hab die Umformung doch nicht gebraucht, aber, es gilt f(x1)=2=f(x2), aber 0≠2, also f nicht injektiv
@lxemirxl2721Ай бұрын
Du hast die Parabel im Definitionsbereich eingeschränkt. Für x quadrat kommen nur positive Zahlen raus. Wieso hast du beim Wertebereich stehen gehabt R (ohne Einschränkung)
@nerath63925 күн бұрын
Der Wertebereich muss ja nicht zwingend das Bild der Funktion sein, solange das Bild(f) Teil des Wertebreichs ist geht das klar. Sie hat als Definitionsbereich nur die positiven reellen Zahlen und bildet auf die reellen Zahlen ab. Bei x² bekommt man dann halt nur positive Zahlen und damit ist Bild(f) Teilmenge des Wertebreichs von f Sie hat ja auch gesagt, das für jeden Y-Wert HÖCHSTENS ein x Wert existieren darf --> kein x existierender x Wert ist erlaubt
@lissischmidt82612 жыл бұрын
Hey, ich hab eine Aufgabe: definiert werden soll eine Abbildung f:N->N, die injektiv ist und die Menge N ohne Bild(g) unendlich viele Elemente hat. Aber sobald ich f(x) definiere hab ich ja eine unendliche Menge ohne mindestens ein Element. Wie ist diese Aufgabe lösbar? ich hab mir schon tausend Gedanken gemacht aber selbst mit fall Unterscheidung komm ich nicht auf die Lösung. Danke für die Hilfe!
@mouadmeziani19832 жыл бұрын
hi! Danke für das Video Ich mache gerade eine Aufgabe und weiß ehrlich gesagt nicht, wie ich an die rangehe, nämlich wir haben f:R^2 ---> R^2, (x, y) ---> (y, x) und ich muss Injektivität und Surjektivität prüfen. Es ist mir klar, dass wir z.B in Injektivität f(x1, y1) = f(x2, y2) aber ich weiß nicht wie ich diese x1 = x2 ? y1 = y2 repräsentiere Danke im voraus
@fereshtekasra5038 Жыл бұрын
Danke, aber was wenn x geht auf cos(5x), sin(x) , R geht auf R quadrat
@BooBar25213 жыл бұрын
klasse video! machst du auch ein update zu surjektiv?
@MathemaTrick3 жыл бұрын
Danke dir! Ja, das Video zur Surjektivität habe ich auf meiner To-Do-Liste stehen. Aber ich schiebe es dann etwas weiter nach oben, dass es bald kommen wird. 😊
@sanhill94092 жыл бұрын
Hi, wie zeigt man denn, dass eine Matrix injektiv, suriektiv oder bijektiv ist?
@emmy516310 ай бұрын
Ist injektiv, wenn der Kern der Matrix nur das neutrale Element enthält, meistens die 0
@drstoned85233 жыл бұрын
du solltest eine alexa mässige AI machen die wie du mathe probleme erklärt haha ... 90 min vorlesung gehabt und jetzt macht alles erst sinn
@MathemaTrick3 жыл бұрын
Hehe, freut mich, dass ich dir helfen konnte! :) Was studierst du denn?
@drstoned85232 жыл бұрын
@@MathemaTrick computer engineering, sry für die late response benachrichtigungen waren aus
@YourSpoof6 ай бұрын
Warum zum Geier ist f: R+ -> R+, f(x) = 3x+2 NICHT bijektiv?
@nerath63925 күн бұрын
Wenn eine Funktion bijektiv sein soll, muss sie injektiv und surjektiv sein. Dein Beispiel ist injektiv aber nicht surjektiv. Wenn du auf surjektivität prüft nimmst du y = f(x) und formst nach x um. Da kommt raus: y-2/3 = x Wenn du jetzt z.b. für y = 1 einsetzt bekommst du für x = 1-2/3 --> x = - 1/3 x = - 1/3 lieft nicht in deinem Definitionsbereich , das heißt du hast einen y-Wert aus dem Wertebreich für den kein x aus dem Definitionsbereich getroffen wird --> nicht surjektiv --> nicht bijektiv
@mxj70193 жыл бұрын
🖤
@leonmancaj36902 жыл бұрын
Susanna Suzanna mio amor vielen Dank
@hansdampf21883 жыл бұрын
Traumfrau
@pawa32807 ай бұрын
ich werde nie verstehen,warum Menschen ein Video zur Erklärung machen, aber einfach 80% der Erklärung auslassen. Video geschaut, nichts nada null erklärt
@nerath63925 күн бұрын
Sie hat alles erklärt was es zu erklären gibt ... was erwartest du denn noch ?
@user-ky9iz9fn9k3 жыл бұрын
mommy
@xboxlox Жыл бұрын
haji gut erklärt aber der letzte Beispiel Menschen von 20 - 30 da denkt man nicht an die Namen da das sowieso absoluter schwachsinn ist sondern an der Range also 20,21,22,23....30 und so wäre es doch injektiv aber das ist auch sehr klar geine ahnung du mascht dasch falsch ich sage es dir
@rameezabead648811 ай бұрын
klatsch mal weniger Werbung rein es nervt!!!
@Seacle142 ай бұрын
@@rameezabead6488 Der Uploader hat schon seit längerer Zeit keine Kontrolle über Werbung mehr...