Apparently in math you can put together two things in seemingly random fashion and dr peyam can prove that they make sense
@BRORIGIN5 жыл бұрын
Total clickbait. The thumbnail said sqrt(dx), but got sqrt(dt). Im pressing unsubscribe twice.
@skyfall-t8p5 жыл бұрын
Bror Just denote time as x
@blackpenredpen5 жыл бұрын
Unsubscribe twice = subscribe
@insearchofpeace21515 жыл бұрын
@@blackpenredpen Well, I really don't want to r/whoosh you as you are a great math tutor. But seriously, your comment is r/whoosh worthy.
@AlgyCuber5 жыл бұрын
but if you unsubscribe then there’s no unsubscribe button for you to press, so it’s a pair of docks
@blackpenredpen5 жыл бұрын
Kaigun Taisho Borsalino Kizaru What does that mean?
@blackpenredpen5 жыл бұрын
Ok, I went through the video.... I need some coffee and then I will watch again....
@xcalibur64825 жыл бұрын
Iam seriously thinking of a math meme right now but i cant imagine one 😂😂.. Maybe I'll think after dinner.
@buxeessingh25715 жыл бұрын
"I need my Brownian motion generator to wake up each morning," seems apt. You can invent the Infinite Improbability Drive for an encore, which would win you The Galactic Prize for Extreme Cleverness.
@MathManMcGreal5 жыл бұрын
I need a second cup... or third...
@blackpenredpen5 жыл бұрын
@@MathManMcGreal I need expressos now...
@shayanmoosavi91395 жыл бұрын
I know right? 😂😂😂😂
@nootums5 жыл бұрын
I can always rely on Dr. πm to blow my mind!
@GeodesicBruh5 жыл бұрын
Ming wut
@blackpenredpen5 жыл бұрын
You are in trouble now. People will keep asking you to put dx anywhere that they want. (I know I will be in trouble tmr 9am too... hahahhaha)
@neilgerace3555 жыл бұрын
You mean ... you can't?
@wojtekburzynski6545 жыл бұрын
Integral of 1/dx
@allaincumming63135 жыл бұрын
@@wojtekburzynski654 That's beyond ω, ftw
@mauriciocaviedes65204 жыл бұрын
@@wojtekburzynski654 Please, if someone knows!
@unfetteredparacosmian5 жыл бұрын
This integral: *exists* Every single calculus teacher: "Wait, that's illegal"
@МаксимЮрченков-ы5ь5 жыл бұрын
Can you integrate 1/dx?
@Sid-ix5qr5 жыл бұрын
_Math Teacher_ : Nope, that Integral isn't possible. _Dr. Peyam_ : Hold my beer.🍻
@blackpenredpen5 жыл бұрын
In Dr. P, we believe!
@magnetonerd45535 жыл бұрын
Stochastics is a fascinating area of mathematics. I have been learning pure Probability Theory in order to try and understand these processes. Your video has really helped to clear up some of my confusion and misconceptions that I had. Thank you!
@robertmines55775 жыл бұрын
Dr. Peyam, I work in systems biology, and I try to simulate gene circuits in the presence of noise. Most of the time, people in my field are still using the Gillespie-Doob Stochastic Simulation Algorithm (for exact stochastic simulation based on exponential races). Obviously, in cases with multiple concentration scales or time scales, using stochastic integration via Tau-Leaping or Chemical Langevin (Brownian Motion) methods would be a significantly more efficient solution for these problems (since you can specify time steps and avoid oversampling unimportant but fast reaction channels). However, the vast majority of people outside of pure math really cannot handle a rigorous course in stochastic calculus (myself included). I really appreciate that you are making this video series and helping non-specialists to learn this information. This is so important for so many fields of physics, chemistry, biology, and engineering, but most of us would not get this exposure without you.
@drpeyam5 жыл бұрын
Thank you! 😄
@ninakarim96745 жыл бұрын
I think the next video is how to find integral of ln(dt)
@acorn10145 жыл бұрын
I think it would have to be the integral of ln(1+dx) or something like that; because, the integrand has to tend to zero, as dx tends to zero.
@kaanetsu16232 жыл бұрын
@@acorn1014 yeah u r right
@warrickdawes79005 жыл бұрын
@2:00 No I'm not joking, and stop calling me "Shirley"!
@drpeyam5 жыл бұрын
Hahahaha
@livedandletdie5 жыл бұрын
Shirley the best comment you've made...
@miguelalvarez37405 жыл бұрын
Amazing Dr. P! I´m allways have been interested in stochastic processes so I will try to figure out how to add ths new knowledge to my model. Thank you again.
@mrbenwong865 жыл бұрын
I suppose you can sqrt(∫) dx as well.
@andi_tafel5 жыл бұрын
This is also clickbait: You didn't solve the integral of sqrt(dx). You solved the integral of sqrt(dt).
@Joe.O.3 жыл бұрын
I'm no maths genius and I struggle with basic problems. But your enthusiasm and teaching style is amazing. I sat watching this with no idea what you are talking about but enjoying every moment of your presentation.
@giannismaris135 жыл бұрын
i like your Calculus , but i would like to see some topology or even metric spaces from you!😉
@KarlChamoun5 жыл бұрын
try dx^dx
@tayloraf51085 жыл бұрын
Is this throwing shade or just joke? Idek
@AdityaPrasad0075 жыл бұрын
Somehow, this professor fits the image of a really nerdy, smart guy..... I love the honest, effusing passion he exudes.
@AdityaPrasad0075 жыл бұрын
For a second there I was so happy to have been hearted 💓 but... then I saw how generous Dr is with his love, making me realise how humans sadly only tend to value that which is scarce.
@pierreabbat61575 жыл бұрын
This works only if you put ± before √. Without ±, the integral diverges to infinity as dx (or dt) goes to zero.
@Rundas694205 жыл бұрын
Next logical step after that would probably be integrating f(dx), where f is riemann-integrable xD. But that looks sorta impossible to me. Although it's nice to see the differentials at some other place than the end of "regular" integrals or differential-quotients :D
@mikewagner22995 жыл бұрын
So does that mean if I take your 2nd statement from 3:00 and 11:23 we get: Int(√dt,a->b)~N(0, b-a) =N(0,b) - N(0,a) Whereby FTC implies Int(√dt) ~ N(0,t) [+C = 0 by I.C.] Hardly rigorous but Int(√dt) ~ N(0,t) Does look pretty so it must be true
@drpeyam5 жыл бұрын
I don’t think N(0,b) - N(0,a) = N(0,b-a), but I think your other statement is true
@PeterBarnes25 жыл бұрын
Half-integral. Inverse operation to the half-derivative. G(x) = int( sqrt(dx)) = (J^1/2)[1] find G(x) such that (D^1/2)[G(x)] = 1 Depending on how you want to go about it, you might integrate both sides: (J^1/2)[G(x)] = x G(x) = (D^1/2)[x] Which you did a video on: int( sqrt(dx)) = (J^1/2)[1] = (D^1/2)[x] = (2/sqrt(π)) * sqrt(x) Get with it πm!
@remlatzargonix13295 жыл бұрын
Awesome video!....I am interested in stochastic calculus, so if you did more videos like this that would be great! Cheers!
@dr.rahulgupta75734 жыл бұрын
Excellent presentation of the topics in a beautiful manner.Very good .DrRahul Rohtak Haryana India
@shmarfle475 жыл бұрын
Me: has completed multi variable calculus Also me: whaaaaa...???
@yousteveaaaa3 жыл бұрын
Would stochastic approach give the correct answer to integral dx instead of integral sqrt(dx) ?
@bogdancorobean92705 жыл бұрын
Writes in title "integral of sqrt(dx)". Proceeds to make a video about integrating sqrt(dt) :x
@drpeyam5 жыл бұрын
It’s the same thing...
@joao_pedro_c5 жыл бұрын
Watch flammable maths' video on dummy variables and you'll see it's the same thing
@bogdancorobean92705 жыл бұрын
That's exactly what a mathematician might say. Us physicists (otherwise known for our mathematical rigour :) ) know that dx is for space and dt is for time.
@joao_pedro_c5 жыл бұрын
@@bogdancorobean9270 I see your point, but I disagree, it's just letters... Just like u can use dt for time nothing stops me to use dJ, for example.
@bogdancorobean92705 жыл бұрын
Leonard Susskind tells this joke in one of his lectures: "You always use epsilon to denote something small. If you want to confuse a mathematician, have epsilon be something big." This was sort of my point, only for physicists. Of course I know it's a dummy variable, didn't mean to sound like a troll :)
@emmepombar33284 жыл бұрын
Is there any generalized form, like the integral of g(dx), where g is any (or a greater subset) function? Or even the integral of f(x)*g(dx)?
@chasemarangu5 жыл бұрын
alright I think that u might not be entirely correct; in order to find teh integral we take a rectange sum ofareas of rectangles of side length f(x) and side length dx and so multiply f(x)*dx and we do this for the limit as dx → 0 and also approaches every possible value of f(x) so really its a matter of dx sorta equals 0 and so f(dx)*(x/dx) so its like ∫ (0, x) [ f(dx) ] = x * f(dx)/dx so which diverges faster or does it converge, f(x) or dx? usually the answer will be 0, ∞, or -∞ and in this case its 0 i think the answwers 0
@drpeyam5 жыл бұрын
I’m correct; the answer is Brownian motion 😊 Probability is weird
@chasemarangu5 жыл бұрын
@@drpeyam Sure. I only dont understand one thing: how come we cant just do the limit as dx → 0 of sum from i=0 to x/dx of ( 1⋅√dx ) it seems to work as an integral calculator for x² and eˣ instead of √dx so i dont see why this wouldnt be correct for √dx as well
@parsecgilly14955 жыл бұрын
I, the integral of sqrt(dx) would calculate it this way: first we easily calculate the differential of order k of x ^n : d (x^n) = n x ^(n-1) dx (first order) d2 (x^n) = n (n-1) x^(n-2) dx (second order) dk (x^n) = n(n-1)(n-2)...(n-k+1) x^(n-k) dx = (n!/(n-k+1)!) x^(n-k) dx (k-order) so, at this point I put: n=1 and k=1/2, so we have: sqrt(dx)=1/((3/2)!) * x^(-1/2) dx, so, the integral of sqrt(dx) is: Integral (sqrt(dx)) = Integral (1/((3/2)!) * x^(-1/2) dx); the second member is easy to calculate, in fact we get: Integral (sqrt(dx)) = 2 * root (x) / ((3/2)!) + Cost ; finally, using the gamma function I get: Integral (sqrt(dx)) = (8/3) * root (x/pi) + Cost if I did not make transcription errors, this should be the exact result
@drpeyam5 жыл бұрын
That’s almost the exact same thing as my half derivative video
@alfiealfie354 жыл бұрын
Wouldn't this technically be integral of +/-sqrt(dx) (because either way it would square to dx)? I guess that kinda explains the fact that it is finite, since the erratic behaviour is both increasing and decreasing (and has a mean of 0).
@loszdog29882 жыл бұрын
Yeah. He left this out, although he did heart another comment mentioning it.
@curtiswfranks5 жыл бұрын
Around 17:00, what if we let λ vary between partitions? Like, draw from the interval with uniform distribution or something. I am not even sure that this is well-defined, but I want to knock out this dependence.
@drpeyam5 жыл бұрын
In that case the limit might not exist. It’s because you choose the same lambda every time that the limit turns out to exist
@curtiswfranks5 жыл бұрын
@@drpeyam Wild! This is really interesting. I cannot say that I understand (I readily admit), but it is fascinating just to know that it exists for now. This requires further investigation!
@curtiswfranks5 жыл бұрын
What does the little circle mean? Why is that included?
@drpeyam5 жыл бұрын
Just to distinguish it from the Itô integral!
@daaa22995 жыл бұрын
integral from a to b sqrt(dx) = integral from a to b 1/sqrt(dx) * dx 1/sqrt(dx) = infinity integral form a to b infinity * dx = infinity right?
@blackpenredpen5 жыл бұрын
Damn!!!
@danielaorozco99955 жыл бұрын
I love your enthusiasm for math ❤️ it’s very inspiring
@zajoliroA4 жыл бұрын
If you think about the integral analytically, aren’t you summing the square roots of a bunch of tiny changes? How does this result in something that may be different every time?
@non-inertialobserver9465 жыл бұрын
What happened with Flammable Maths?
@drpeyam5 жыл бұрын
I dunno! 😮
@himanshumallick22695 жыл бұрын
He's planning an endgame version of integral of cos(x)
@wowZhenek5 жыл бұрын
Awesome video. Especially the ending, where you explained the relationship to Lebesgue integrals. Also, is there any other examples for different lambdas or only 2 values are used? Coz I also only heard of Stratonovich integral besides Ito's one.
@drpeyam5 жыл бұрын
I’m not sure about other examples, but the Ito and Stratonovich are the classical ones! I can also imagine one where lambda = 1, where you are betting on the future, but not sure how interesting it is
@kingthanatos60935 жыл бұрын
Ok who else thinks that Dr Peyam is worthy of wielding Mjolnir? I sure do.
@Maniclout5 жыл бұрын
Sooo would this be applied in something like stock predictions for example? It looks and probably is very complicated.
@drpeyam5 жыл бұрын
Using this integral, you get what are called stochastic differential equations, and you can use solutions of those to model stock behavior. Look up the Black-Scholes equation for example.
@nicholasleclerc15834 жыл бұрын
12:20 What ? I don't understand... ???
@skeletonrowdie17685 жыл бұрын
that one dislike could not differentiate between the buttons :O
@drpeyam5 жыл бұрын
Probably acted like Brownian Motion 😉
@blackpenredpen5 жыл бұрын
Aka, being 😵
@eneapane58315 жыл бұрын
I think that one dislike was FlammableMaths😂😂
@JaGWiREE5 жыл бұрын
Some love for us stochasticians!!! Brown would be proud.
@SellusionStar5 жыл бұрын
Is this black pen red pen over there?
@blackpenredpen5 жыл бұрын
Over where?
@SellusionStar5 жыл бұрын
@@blackpenredpen in the whiteboard shelf :)
@blackpenredpen5 жыл бұрын
@@SellusionStar I wasn't there that day.
@SellusionStar5 жыл бұрын
@@blackpenredpen Don't tell me that! I can see the pens right there with my own eyes! 😁😉
@blackpenredpen5 жыл бұрын
SellusionStar hahaha
@That_One_Guy...5 жыл бұрын
Is the brownian motion you're referring is the brownian motion from biology ??
@drpeyam5 жыл бұрын
Yep
@omgopet5 жыл бұрын
I'm so proud of my intuition, saw sqrt(dt) in the thumbnail and though to myself "that's just dW". Edit: you are doing the part around 14:00 backwards, you must first define the type of integral (i.e. the value of your lambda). Otherwise, the integral doesn't mean anything. Ito wrote a whole paper chastising mathematicians for this, he argued that dx=f(t)dW is a "meaningless string of characters" unless the interpretation is clearly defined.
@paulkohl92675 жыл бұрын
Non-stochastic version?
@yeahyeah545 жыл бұрын
I studied Brownian motion in university in a mathematical way, i don't understand how you can handle all these different things, i think you are a geniuous
@drpeyam5 жыл бұрын
❤️
@geralln5 жыл бұрын
Well, since you can put the dx anywhere. What about e^(dx)?
@josuepimentel63215 жыл бұрын
How may I upload spanish subtitles to this video?
@drpeyam5 жыл бұрын
That’s a great idea! I’ve just enabled this video for subtitles, let me know if this works
@josuepimentel63215 жыл бұрын
@@drpeyam Thanks! I'll start to write the subtitles!
@vladimirkuznetsov20585 жыл бұрын
What about \int (dx) ^ 2?
@i_am_anxious025 жыл бұрын
If the random variable can be anything, does that mean it can be any constant or anything in terms of x
@drpeyam5 жыл бұрын
It could be constant, and any function of “randomness” (whatever that means) to the real numbers. Think for example the gain/loss you get when you roll a die
@shayanmoosavi91395 жыл бұрын
WAIT WHAT? There's such a thing? Well,... There goes my sanity. I miss him. I'm so glad I didn't choose pure mathematics and studying physics instead😂😂😂😂 You gained a sub man :) I'm also subscribed to your friend blackpenredpen. You two are the best.
@jayamitra46565 жыл бұрын
What books on number theory would you recommend after doin burton? Not too advanced please😂
@drpeyam5 жыл бұрын
Niven Zuckermann Montgomery is pretty good!
@jayamitra46565 жыл бұрын
@@drpeyam Thanks!
@mateszabo54875 жыл бұрын
Is this the same place where make Blakckpenredpen his videos?
@drpeyam5 жыл бұрын
Different universities
@roygalaasen5 жыл бұрын
Dr Peyam oh cool! You seem to work so close together that I just assumed that you were working/studying at the same university.
@sofianeafra70235 жыл бұрын
Dr.πm the happiest person on the earth 😂😂 hello please How to solve 5 degre équations ? 😭😭
@helloitsme75535 жыл бұрын
Most of the time you will have to approximate the values. But if you want them exact, sometimes the following works: check if the factors of the constant term are solutions. If so, you know that (x-h) with h the solution is a factor. Then through long division you can get a simpler equation. But not always are the factors of the constant term solutions so this doesn't always work unfortunately. Ask me if you want ways to approximate
@benjaminbrady23855 жыл бұрын
All solutions to any polynomial (including fifth degree) have solutions that are a factor of the constant term divided by a factor of the coefficient of highest degree (x^5 in your case). If there is no constant term, then 0 is a solution and you can divide by x the whole way across to get a polynomial of one degree less. Any other solution is irrational and must either be approximated or factored out through some other algorithm
@helloitsme75535 жыл бұрын
@@benjaminbrady2385 not necessarily every polynomial has these terms that are a factor of the constant term divided by a factor of the leading coefficient. Example : x^2-2=0. Has two solutions: x=√2 and x=-√2. I don't think those are factors eh
@benjaminbrady23855 жыл бұрын
@@helloitsme7553 Yes, anything that is not a ratio of factors is an irrational solution and must be approximated or gotten through some algorithm, if applicable
@helloitsme75535 жыл бұрын
@@benjaminbrady2385 you say all polynomials have these rational solutions but not all of them
@utnis5 жыл бұрын
Please may we have more rigour? I don't know what sqrt(dx) means. I am very uncomfortable considering dx as an abstract infinitesimal. I much rather prefer considering dy/dx as the best possible linear approximation for the slope at a point, a geometric intuition. This doesn't feel like calculus. I don't see how I can construct convergent sums or how limits can be applied when the parts of the integral expressions here are stochastic.
@drpeyam5 жыл бұрын
It’s completely rigorous! Check out the videos in the description to see proofs of all the facts
@utnis5 жыл бұрын
@@drpeyamit is rigourous assuming the sqrt(dx) video is true.
@Handelsbilanzdefizit5 жыл бұрын
find a recursive integral a_n+1(x) = integral_[nx,0] a_n(x) dx So that limes n-->infinity a_n+1/a_n = goldenRatio for all 'x' I found it, printed it, framed it and hang it on the entrance of my house. Just to impress visitors :-)
@ruffifuffler87115 жыл бұрын
A case where the symbols generate the idea, which then tries to validate the condensed thought expressed tightly by the symbols, without leaving us in Hairy Wau.
@dectorey72335 жыл бұрын
In what class would you normally see this? Or is this a current topic of research?
@drpeyam5 жыл бұрын
You see this in advanced probability or stochastic calculus classes
@AndDiracisHisProphet5 жыл бұрын
Or in Statistical Mechanics
@GabrielPohl5 жыл бұрын
Is it possible to generalize integral of f(dx)?
@drpeyam5 жыл бұрын
I’m thinking about it, nothing obvious comes to mind as of now!
@GabrielPohl5 жыл бұрын
@@drpeyam maybe its solvable but not analyticly
@umbraemilitos5 жыл бұрын
Time to discuss the fractional calculus, and the calculus of complex order.
@Bulbulim945 жыл бұрын
can u integral 1\dx ? had it in Physics 2 course
@46pi265 жыл бұрын
What kind of godforsaken physics needs this absurdity
@Bulbulim945 жыл бұрын
@@46pi26 i think when we calculated the total resistance of circuit
@xuhanzhen81265 жыл бұрын
Had my pen and papers out and was gonna begin my day enjoying Dr.Peyam's math 5 min later Threw my pen :/
@johannesh76105 жыл бұрын
This is so weird, but fascinating
@snbeast95455 жыл бұрын
Can you integrate dt^dt?
@drpeyam5 жыл бұрын
Thinking about it :)
@balajidodda77015 жыл бұрын
I did it assuming Riemann sum and got it as infinity. I didn't understand how you related this to stochastic processes.
@drpeyam5 жыл бұрын
That’s the point, it’s not a Riemann sum, it would diverge, that’s why we need this def
@peterchan60825 жыл бұрын
But then after all what exactly is ∫√dx ? I couldn't locate the result at all.
@drpeyam5 жыл бұрын
Basically W(b) - W(a), where W is Brownian motion
@richardaversa71285 жыл бұрын
Did we do ln(dx) yet?
@anonymaus81915 жыл бұрын
Exercise for the reader.
@blackpenredpen5 жыл бұрын
I want sin(dx)
@saitaro5 жыл бұрын
Honestly I can't understand anything about the stochastic integral. How to calculate it? What does it even mean? Can't get my head around it. Hope MIT's edX MOOC on Probability will help me. Or I'm just stupid.
@mathijs1987j5 жыл бұрын
I don't understand. Why can you not interpret this as a Stieltjes integral and use Int f(x) d(g(x))=Int f(x) g'(x)dx to get that this integral is Int 1/(2Sqrt(x))dx? (Omitting integration limits for clarity of notation.)
@drpeyam5 жыл бұрын
The Stieltjes integral would be d(sqrt dx), but here we mean sqrt(dx), those are two different things
@mathijs1987j5 жыл бұрын
@@drpeyam Thanks! So what kind of integral is this one (the sqrt(dx) one)? What do I google to learn more?
@drpeyam5 жыл бұрын
I have 3 videos on it! Other than that, it’s called a Stochastic Integral
@dheerajlalwani44865 жыл бұрын
blackpenredpen @bprp @blackpenredpen How about interegrating this 100 times?
@drpeyam5 жыл бұрын
Hahaha
@blackpenredpen5 жыл бұрын
Hmmm...
@beezball384 жыл бұрын
what the hell did I just watch. I love it
@neilgerace3555 жыл бұрын
17:16 "one of the ???? of Riemann integration" sorry I couldn't understand that word there. Also I don't know what "in L^2" means
@drpeyam5 жыл бұрын
Chef-d’œuvres of Riemann integration
@drpeyam5 жыл бұрын
f is in L^2 if the integral of the square of f is finite
@MrRyanroberson15 жыл бұрын
So... If i remember the definition of an integral that everyone every time tells me is wrong but also gives the exact same answer: Int from 0 to x of f(x)*dx = Lim as h goes to 0 of sum from n=0 to x/h of f(n) * h, where h is basically dx. So instead, it's sqrt(h). Since the function is no longer dependent on x in the inside, x/h = a new x which goes to infinity for all positive x. We get the sum from 0 to x->infinity of sqrt(n), which diverges.
@crazye71325 жыл бұрын
Duuude, watching you drunk is the best thing imaginable. It all make senseeee haha
@aamirraza21845 жыл бұрын
You lzx
@krishanchandrasahu73384 жыл бұрын
Absolutely brilliant sir ji
@fluffymassacre29185 жыл бұрын
I am just nodding my head at this point.
@aintaintaword6665 жыл бұрын
So what was the answer again?..
@drpeyam5 жыл бұрын
W(b) - W(a)
@damntoochill5 жыл бұрын
Just love your energy
@dgrandlapinblanc5 жыл бұрын
Amazing and crazy... Thank you very much.
@IFearlessINinja5 жыл бұрын
So is this just a rigorous way of saying: "Integral sqrt(dx) = depends. Without any other information, the result cannot be pinpointed, but we can use an infinitely vague function to capture the result." Is that inaccurate? It seems to me that any function I can think of, of dt can be integrated into W(a)-W(b), which ruins the whole point of integration producing unique results for unique functions. Is this a predictable and useless result, or am I just misunderstanding the premise?
@drpeyam5 жыл бұрын
Can you give me an example of such function? I can only think of dW
@xcalibur64825 жыл бұрын
Woooooow!!
@abaundwal5 жыл бұрын
Th... this is madness.
@okaymckay5 жыл бұрын
This-is-Dr.Peyam-arta!!!
@Uni-Coder5 жыл бұрын
It is about statistics, probability theory and Markov chains, I'm sure
@Estoyentumente5 жыл бұрын
d is a constant, so Int. [sqrt (dx)] = 1) (2/3)sqrt(d)*x^(3/2), if you integrate in dx 2) sqrt(dx)*y, if you integrate in dy, where y is another variable Fé de errata (Edited): And if d is the variable, so 3) (2/3)*sqrt(x)*d^(3/2) if you integrate in Dexter's sister :v
@hassansameh89605 жыл бұрын
So... What's the answer?
@drpeyam5 жыл бұрын
W(b) - W(a), where W is Brownian motion
@ИльяФедоров-м6б5 жыл бұрын
1/dx pls
@drpeyam5 жыл бұрын
I’ll think about it 😊
@ninakarim96745 жыл бұрын
Dr. Peyam I love you Please I want more and more videos about series conv n div
@JorgetePanete5 жыл бұрын
can you do the integral of √(f'(x)+1)dx? used for the lengths of curves/lines from a to b
@SimchaWaldman5 жыл бұрын
Equivalent to: Is a cucumber longer or greener? Answer: Greener! (I leave it to you to find the proof I found.)
@blackpenredpen5 жыл бұрын
יהודה שמחה ולדמן did you send me that too? I don’t know the answe.
@SimchaWaldman5 жыл бұрын
@@blackpenredpen Proof: The cucumber has of course a finite length L from edge to edge. But both its surface area and volume contain an infinite amount of "green lengths" - On its surface area: GL > L. In its volume: GL ≤ L.
@jorgeeduardopereztasso61345 жыл бұрын
omg this episode brought me so many memories of my Calculus 2 course in the first year of college
@TheAzwxecrv2 жыл бұрын
What next, integrating some function of dx? (!!! ...) Soon high school calculus teachers all over the world r going to organize a conference to condemn Dr. Pym!
@mehdisi91945 жыл бұрын
If your videos continue the same way we will see probably the integral bessel function of dx in the future.😊
@drpeyam5 жыл бұрын
Hahaha
@romygomezjr4 жыл бұрын
Yeah, I think im getting high watching this haha great work Dr. P
@savivirginia45015 жыл бұрын
Your channel is superb man, subbed!!😊
@drpeyam5 жыл бұрын
Thank you!!!
@andreimiga81015 жыл бұрын
Ok, I suck at maths. This video is a very rigurous proof of that.