👋 Follow @integralsforyou for a daily integral 😉 📸 instagram.com/integralsforyou/ 𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐭𝐢𝐨𝐧 𝐦𝐞𝐭𝐡𝐨𝐝𝐬 𝐩𝐥𝐚𝐲𝐥𝐢𝐬𝐭 ► Integration by parts kzbin.info/aero/PLpfQkODxXi4-GdH-W7YvTuKmK_mFNxW_h ► Integration by substitution kzbin.info/aero/PLpfQkODxXi4-7Nc5OlXc0zs81dgwnQQc4 ► Integration by trig substitution kzbin.info/aero/PLpfQkODxXi49OUGvTetsTW61kUs6wHnzT ► Integration by Weierstrass substitution kzbin.info/aero/PLpfQkODxXi4-8kbKt63rs1xwo6e3yAage ► Integration by partial fraction decomposition kzbin.info/aero/PLpfQkODxXi4-9Ts0IMGxzI5ssWNBT9aXJ 𝐅𝐨𝐥𝐥𝐨𝐰 𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐥𝐬 𝐅𝐨𝐫𝐘𝐨𝐮 ▶️ KZbin kzbin.info 📸 Instagram instagram.com/integralsforyou/ 👍 Facebook facebook.com/IntegralsForYou 𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon www.patreon.com/integralsforyou
@chaitanyav49824 жыл бұрын
Thank you so much sir. Your videos helped me a lot.
@IntegralsForYou4 жыл бұрын
Thanks! Welcome to my channel, enjoy it! 😊
@Sergey_Sinits4 жыл бұрын
thank a lot from Russia🇷🇺😊
@IntegralsForYou4 жыл бұрын
You're welcome, Сергей Синицын ! Enjoy the channel! 😉
@Sergey_Sinits4 жыл бұрын
@@IntegralsForYou thanks a lot from Russia* 😏
@IntegralsForYou4 жыл бұрын
;-D
@h_62_harshkumar954 жыл бұрын
Thanks a lot from Bihar
@IntegralsForYou4 жыл бұрын
You're welcome! 😉
@mizaelteixeira6563 жыл бұрын
Thanks 🙏
@IntegralsForYou3 жыл бұрын
You're welcome! 😊😊
@jeeaspirant32 жыл бұрын
thankyou sir
@IntegralsForYou2 жыл бұрын
My pleasure! 😎
@teresacortesmagallon12376 жыл бұрын
thanks dude! :)
@IntegralsForYou6 жыл бұрын
You're welcome! ;-D
@수빙빙-y6v6 жыл бұрын
Thank you
@IntegralsForYou6 жыл бұрын
You're welcome!! ;-D
@mamy.dont.trogay2 жыл бұрын
why u put a minus between "du=" and "(sinx*sinx - cosx*cosx)/sin^2x"?
@IntegralsForYou2 жыл бұрын
Hi! I do it in order to have sin^2(x)+cos^2(x) which is equal to 1: (- sin(x)*sin(x) - cos(x)*cos(x))/sin^2(x) = = (- sin^2(x) - cos^2(x))/sin^2(x) = = - (sin^2(x) + cos^2(x))/sin^2(x) = = -1/sin^2(x) Hope it helped! ;-D
@sephyrias8835 жыл бұрын
I don't get how you made the "du = .... dx" - part. What even is "du" here?
@IntegralsForYou5 жыл бұрын
When we do a substitution we write its expression and then we calculate the derivative on both sides and we put "du" and "dx". Some examples: u = x+1 du = dx u^2 = x^3 2u du = 3x^2 dx u = cos(x) du = -sin(x) dx
@sephyrias8835 жыл бұрын
@@IntegralsForYou So "u * du = (derivative of u) * dx" ? Then I still don't follow with what you wrote here: 0:45. Did you divide u in advance, making it "du=(derivative of u)/u * dx" ? Why would we do that?
@IntegralsForYou5 жыл бұрын
Just let "u" on the left and "cos(x)/sin(x)" on the right. Derivate "u" with respect to "u" and derivate "cos(x)/sin(x)" with respect to "x" and add "du" on the left and "dx" on the right: u = cos(x)/sin(x) (derivative of u) du = (derivative of cos(x)/sin(x)) dx 1 du = -1/sin^2(x) dx du = -1/sin^2(x) dx (last step is only because 1*du=du)
@sephyrias8835 жыл бұрын
@@IntegralsForYou But you wrote du = (-(sin x)^2 - (cos x)^2)/(sin x)^2 Is that the derivative of the entire (cosx)^2/(sinx)^6 ?
@IntegralsForYou5 жыл бұрын
The first step splits cos^2(x)/sin^6(x) dx into [cos^2(x)/sin^2(x)]*[1/sin^2(x)]*[1/sin^2(x)]dx = [cot^2(x)]*[1/sin^2(x)]*[1/sin^2(x)]dx Since Integral of f(x) dx = -Integral of -f(x) dx, we put a minus inside and outside the integral. Now we have: [cot^2(x)]*[1/sin^2(x)]*[-1/sin^2(x)]dx We do: u = cot(x) ==> cot^2(x) = u^2 ==> 1/sin^2(x) = 1+u^2 ==> -1/sin^2(x) dx = du Then: [cot^2(x)]*[1/sin^2(x)]*[-1/sin^2(x)]dx = (u^2)(1+u^2)du