Once again you made a problem that was confusing me look easy. Thanks!
@IntegralsForYou5 жыл бұрын
Thanks Meryl! I am happy to see how you are enjoying the channel! ;-D
@mrwhosetheboss39884 жыл бұрын
❤❤❤❤4 yrs and it's still helping a lot of students..
@IntegralsForYou4 жыл бұрын
And very proud of it! 😊
@gdjkgdjk25233 жыл бұрын
@@IntegralsForYou Thank you for helping me🙏
@IntegralsForYou3 жыл бұрын
@gdjk gdjk You're welcome! 😊
@Vishahunna554 жыл бұрын
in the second line why did u add a negative in front of the integral? and how were u able to change sin(x0 from the first line to to -sin(x) in the second line?
@IntegralsForYou4 жыл бұрын
Hi! I did it both actions in order to have a minus in front of sin(x) because I knew that I will do the u=cos(x) substitution which implies having du=(-sin(x))dx. If you don't want to do it, you can do u=cos(x) directly: Integral of sin^3(x)cos^2(x) dx = = Integral of sin^2(x)cos^2(x) sin(x)dx = = Integral of (1-cos^2(x))cos^2(x) sin(x)dx = Substitution: u = cos(x) du = -sin(x)dx ==> -du = sin(x)dx = Integral of (1-u^2)u^2 (-du) = = Integral of (u^2-1)u^2 du = = Integral of (u^4 - u^2) du = = u^5/5 - u^3/3 = = (1/5)cos^5(x) - (1/3)cos^3(x) + C ;-D
@winproduction75853 жыл бұрын
@@IntegralsForYou Thank you
@IntegralsForYou3 жыл бұрын
@Win production My pleasure! 💪
@me-sg8gm Жыл бұрын
@@IntegralsForYouThankk youu so much, i had the same doubt about This
@dildobaggins27594 жыл бұрын
My bone to pick with this problem is why dont we do something simpler and pick u as sin^3x but it dosent give the correct answer even though its debatebly the easier way to do the problem. Why is this?
@IntegralsForYou4 жыл бұрын
Hi! The problem for any u-substitution is that we always have to think in expressing dx in terms of "u". It is not impossible, but is more much longer than doing u=cos(x): u = sin^3(x) ==> u^(1/3) = sin(x) 1 = sin^2(x)+cos^2(x) ==> cos^2(x) = 1-sin^2(x) = 1-u^2 du = 3sin^2(x)cos(x) dx = 3u^(2/3)sqrt(1-u^2) dx ==> du/3u^(2/3)sqrt(1-u^2) = dx Integral of sin^3(x)cos^2(x) dx = = Integral of u^(1/3)(1-u^2) du/3u^(2/3)sqrt(1-u^2) = = (1/3)Integral of u^(-1/3)(1-u^2)/u^(2/3)sqrt(1-u^2) du = =... Same idea, but shorter example: Integral of sin^3(x)cos(x) dx = = Integral of u*sqrt(1-u^2)*du/3u^(2/3)sqrt(1-u^2)) = = (1/3)Integral of u^(1/3) du = = (1/3)u^(1/3+1)/(1/3+1) = = (1/3)u^(4/3)/(4/3) = = (1/3)(3/4)u^(4/3) = = (1/4)u^(4/3) = = (1/4)(u^(1/3))^4 = = (1/4)(sin(x))^4 = = (1/4)sin^4(x) + C
@dildobaggins27594 жыл бұрын
@@IntegralsForYou oh yeh i got you bro cheers sin^3x is 3sin^2xcosx not 3sin^2x. That was a silly mistake of mine...
@IntegralsForYou4 жыл бұрын
@dildo baggins No problem! 😉👍
@karangargote3443 Жыл бұрын
Thanks 🙏🏻😊
@IntegralsForYou Жыл бұрын
My pleasure! ☺
@castillomarkjayson53733 жыл бұрын
hello what if the problem goes like this ∫cos^2(2x)sin^3(2x) dx? will it have the same answer? ty
@IntegralsForYou3 жыл бұрын
You just have to do a little substitution before: Integral of cos^2(2x)sin^3(2x) dx = Substitution: t = 2x dt = 2 dx ==> dt/2 = dx = Integral of cos^2(t)sin^3(t) dt/2 = = (1/2)Integral of cos^2(t)sin^3(t) dt = = (1/2)*(watch video again) = = (1/2)*(-cos^3(t)/3 + cos^5(t)/5) = = (-1/6)cos^3(2x) + (1/10)cos^5(2x) + C 😉
@tsknslhaa Жыл бұрын
Hello, what if the x inside the parenthesis is changed into 2x, what Will be the solution? Like sin^3(x).cos^2(2x) Only one parenthesis
@IntegralsForYou Жыл бұрын
Of course! Here you have the solution: Integral of sin^3(x)*cos^2(2x) dx = cos(2x) = 2sin^2(x) - 1 = Integral of sin^3(x)*(2sin^2(x) - 1) dx = = Integral of (2sin^5(x) - sin^3(x)) dx = = 2*Integral of sin^5(x) dx - Integral of sin^3(x) dx = = 2* integralsforyou.com/integrals?v=w__RvsAO1BQ - integralsforyou.com/integrals?v=kBHzHDDgoIY = = 2*[ -cos(x) + (2/3)cos^3(x) - (1/5)cos^5(x) ] - [ -cos(x) - (1/3)cos^3(x) ] = = -2cos(x) + (4/3)cos^3(x) - (2/5)cos^5(x) + cos(x) + (1/3)cos^3(x) = = -cos(x) + (5/3)cos^3(x) - (2/5)cos^5(x) + C Hope I didn't do any mistake hehe
@tsknslhaa Жыл бұрын
@@IntegralsForYou thank u very much
@IntegralsForYou Жыл бұрын
@@tsknslhaa My pleasure! ☺
@stevo06 жыл бұрын
How can sin(x) just turn into -sin(x)?
@IntegralsForYou6 жыл бұрын
Hi Steven Jaimes! If you are talking about the cos(x) which turned into -sin(x) (minute 1:30) it is because we derivate when we do substitution: "u = f(x)" and "du = f'(x) dx" where f'(x) is the derivative of f(x).
@stevo06 жыл бұрын
no not that, after the 2nd =, u have integral of( 1-cos^2(x)) (cos^2(x)) (sin(x))....then u drop down and have: negative integral of (1-cos^2(x))(cos^2(x)) (-sin(x)) dx...where does the negative before the sin come from? im guessing u multiplied the whole thing by negative? thats why theres also negative at the beginning as well? and if that is the case, wouldnt that negative at the beginning have to be distributed into everything?
@IntegralsForYou6 жыл бұрын
As you say, the negative sign comes from multiplying by -1 inside and outside the integral, so we put a minus outside an a minus before the sin(x). I do that because I want to have -sin(x)dx and not sin(x)dx because it is the derivative of cos(x). The outsider minus is distrubuted in the last step. We do: ... = = - Integral of (u^2-u^4) du = (sign not still distributed) = - (u^3/3 - u^5/5) = (sign not still distributed) = - u^3/3 + u^5/5 = (sign distributed!) = - cos^3(x)/3 + cos^5(x)/5 + C But that doesn't mean you have to distribute it in that step. You can do it when you want, you will have exactly the same answer: Integral of sin^3(x)cos^2(x) dx = = Integral of (1-cos^2(x))cos^2(x) sin(x) dx = And from here you can do as you want: 1: = - Integral of (1-cos^2(x))cos^2(x) (-sin(x)) dx = = - Integral of (1-u^2)u^2 du = = - Integral of (u^2-u^4) du = = - (u^3/3 - u^5/5) = = - u^3/3 + u^5/5 = = - cos^3(x)/3 + cos^5(x)/5 + C 2: = Integral of -(1-cos^2(x))cos^2(x) (-sin(x)) dx = = Integral of -(1-u^2)u^2 du = = Integral of -(u^2-u^4) du = = Integral of (-u^2+u^4) du = = - u^3/3 + u^5/5 = = - cos^3(x)/3 + cos^5(x)/5 + C 3: = Integral of (-1+cos^2(x))cos^2(x) (-sin(x)) dx = = Integral of (-1+u^2)u^2 du = = Integral of (-u^2+u^4) du = = - u^3/3 + u^5/5 = = - cos^3(x)/3 + cos^5(x)/5 + C 4: = Integral of (1-cos^2(x))(-cos^2(x)) (-sin(x)) dx = = Integral of (1-u^2)(-u^2) du = = Integral of (-u^2+u^4) du = = - u^3/3 + u^5/5 = = - cos^3(x)/3 + cos^5(x)/5 + C I hope it is clear now. If not, ask again, please! ;-D
@IntegralsForYou6 жыл бұрын
Oh, and there is another way to get the minus, if you are interested in: Integral of sin^3(x)cos^2(x) dx = = Integral of sin^2(x)cos^2(x) sin(x)dx = = Integral of (1-cos^2(x))cos^2(x)sin(x)dx = Substitution: u = cos(x) du = - sin(x)dx ==> -du = sin(x)dx = Integral of (1-u^2)(u^2)(-du) = = - Integral of (1-u^2)(u^2) du = = .....
@vikasmalhotra73356 жыл бұрын
Which pen are you using bro? By the way thanks for the solutions keep uploading 🙏
@IntegralsForYou6 жыл бұрын
Hi, Vikas! It is just a black bic cristal pen ;-D Thank you for your comment! ;-D
@annetherese4 жыл бұрын
hello,, what if the x inside the parenthesis is changed into 2x, what will be the solution? sin^3(2x)cos^2(2x)dx
@IntegralsForYou4 жыл бұрын
Integral of sin^3(2x)cos^2(2x) dx = Substitution: t = 2x dt = 2 dx ==> dt/2 = dx = Integral of sin^3(t)cos^2(t) dt/2 = = (1/2)Integral of sin^3(t)cos^2(t) dt = = (1/2) kzbin.info/www/bejne/d6vJf519aN6Ci6s = = (1/2)( -cos^3(t)/3 + cos^5(t)/5 ) = = (-1/6)cos^3(2x) + (1/10)cos^5(2x) + C Hope it helped! ;-D
@លូឈីទីក5 ай бұрын
I like Math when i know how to solve it but i hate it when i don't 😂
@IntegralsForYou5 ай бұрын
Me too... 🤫
@pakmai94624 жыл бұрын
Thank you so much but why did we substitute the sin^2(x) into [1-cos(x)] instead of substituting cos^2(x) into [1-sin(x)]? And do we need to do it this way or it doesn't matter?
@IntegralsForYou4 жыл бұрын
For the integrals sin^n(x)cos^m(x) with "n" or "m" odd integers, you have to do this substitution for the one which has the odd number. If both are odd numbers, it doesn't matter which one you choose. I think you will be interested in a playlist I did: Integrals of sin^n(x)cos^m(x) dx 👉kzbin.info/aero/PLpfQkODxXi492bpysQl1g02rPIniquUBL
@pakmai94624 жыл бұрын
Integrals ForYou thanks!
@IntegralsForYou4 жыл бұрын
You're welcome! Enjoy the channel! 😀
@hussamalanesi74324 жыл бұрын
@@IntegralsForYou This information has helped me a lot thanks, but what if both "n" and "m" are even?
@cnichels4 жыл бұрын
what do i need to do to remember this process
@IntegralsForYou4 жыл бұрын
Integral of sin^n(x)cos^m(x) dx: - If n odd and m even (same for n even and odd): You can peel off one copy of that function to be your "du", and rewrite all the other copies using the basic Pythagorean identity, sin^2(x) + cos^2(x) = 1 Example: Integral of sin^3(x)cos^2(x) dx = kzbin.info/www/bejne/d6vJf519aN6Ci6s - If both n and m are equal and even: You can use the half-angle formula. sin(2x) = 2sin(x)cos(x) ==> (1/2)sin(2x) = sin(x)cos(x) ==> (sin(x)cos(x))^n = [(1/2)sin(2x)]^n = ((1/2)^n)sin^n(x) Example: Integral of sin^2(x)cos^2(x) dx = kzbin.info/www/bejne/gnO6k4ScjJlghrM These are the most common cases and of course, when the exponents are greater the integral becomes very long...
@swattt40793 жыл бұрын
@@IntegralsForYou thankssss
@IntegralsForYou3 жыл бұрын
@swat tt You're welcome! 💪
@GhanshyamSingh-ld8xe6 жыл бұрын
*Can we also do like this:* Taking sin^2 x =t Then, dwrt x, 2sin x . cosx = dt/dx Sin x . cos x dx = dt/2 So, placing these in question, Integral of t/2 . dt Then comes, ( t^2)/4 + C Comes out as (sin^4 x)/4 +C Please tell, this is correct or not as early as possible. *Please.*
@IntegralsForYou6 жыл бұрын
Sorry for my late answer Ghanshyam Singh... You forgot a cos(x) in terms of "t" so your method doesn't work: Integral of sin^3(x)cos^2(x) dx = = Integral of sin^2(x)cos(x) sin(x)cos(x)dx = = Integral of t*cos(x)*dt/2 = ... If it is sin^3(x)cos(x) it works: Integral of sin^3(x)cos(x) dx = = Integral of sin^2(x) sin(x)cos(x)dx = = Integral of t dt/2 = = (1/2)Integral of t dt = = (1/2)(t^2)/2 = = (1/4)(t^2) = = (1/4)([sin^2(x)]^2) = = (1/4)sin^4(x) + C
@dayzezrof2pbrawlstars1712 жыл бұрын
Like 700 This guy go me as his 700 th like after six years bro the world is cruel >:-(
@IntegralsForYou2 жыл бұрын
Your like has been as welcomed as if it was the first one! 😊Enjoy the channel! 💪
@soymeponguy2224 жыл бұрын
Thank you I just came here to make sure that what I did was correct and it is ☺️
@IntegralsForYou4 жыл бұрын
Cool! It is nice to see how you use my videos! Enjoy the channel! 😀
@Sakura-sh9du2 жыл бұрын
Thank youuuuuu
@IntegralsForYou2 жыл бұрын
My pleasure! 😊
@houtan42384 жыл бұрын
At the end of the first line you forgot the "dx" but thanks it helped a lot
@IntegralsForYou4 жыл бұрын
Oops! Sorry about that!
@gauthamkulal35053 жыл бұрын
In the second line why did you take u = cosx. Qsn is about sinx......
@IntegralsForYou3 жыл бұрын
Hi! We take u=cos(x) because we have the entire expression in terms of cos(x) except for the sin(x) which is multiplying the dx. We need the sin(x) because when we do u=cos(x) then du = -sin(x)dx. In consequence, the sin(x)dx has to be substituted by the -du: Integral of sin^3(x)cos^2(x) dx = = Integral of (1-cos^2(x))cos^2(x) sin(x)dx = = - Integral of (1-cos^2(x))cos^2(x) (-sin(x))dx = Substitution: u = cos(x) du = (-sin(x))dx = - Integral of (1-u^2)u^2 du = = ... Hope it helped! ;-D
@ahmedalhisaie76987 жыл бұрын
Why the integral has got minus sign in the second line at 1:20 ?!
@IntegralsForYou7 жыл бұрын
Hi! Because I wanted -sin(x)dx instead of sin(x)dx inside the integral because the derivative of cos(x) is -sin(x). You can do it in two different ways: 1. As I do in the video (multiplying by -1 inside and outside the integral): ... = Integral of (1-cos^2(x))cos^2(x)sin(x)dx = = - Integral of (1-cos^2(x))cos^2(x)(-sin(x))dx = Substitution: u=cos(x) du=-sin(x)dx = - Integral of (1-u^2)u^2 du = = ... 2. Without multiplying by -1 inside and outside the integral: ... = Integral of (1-cos^2(x))cos^2(x)sin(x)dx = Substitution: u=cos(x) du=-sin(x)dx ==> -du = sin(x)dx = Integral of (1-u^2)u^2 (-du) = = - Integral of (1-u^2)u^2 du = = ... Both methods are correct, but you can only choose one of them :-D
@altamash1987 жыл бұрын
You make it look easy man! Thanks
@IntegralsForYou7 жыл бұрын
:D You're welcome ;D
@Steve-vk2kw2 жыл бұрын
Ohh man.....that was so easy!!!!! How was i not able to do this?? 😢
@IntegralsForYou2 жыл бұрын
😜
@Steve-vk2kw2 жыл бұрын
@@IntegralsForYou 😒
@ashIesha Жыл бұрын
THANK YOU !!!!!!!!!!!!!!!!!!!!!!!!!!!
@IntegralsForYou Жыл бұрын
My pleasure! 🙂 Enjoy the channel and the website! 🙂 integralsforyou.com/
@zubeirjamaa2 жыл бұрын
My professor just gave this exact question on a pop quiz and I’m shocked I got it right! So happy. Only thing is I forgot the “+C” but I hope he forgives that 😅
@IntegralsForYou2 жыл бұрын
Nooooo, you forgot the +C!! 😥😥😆 Thanks for your comment, I really appreciate it!
@Simon-vn4jx3 жыл бұрын
thanks!
@IntegralsForYou3 жыл бұрын
My pleasure! 😊
@raeceljeanmaputibantilan4 жыл бұрын
The antiderivative of cosx is sinx not -sinx. Just sharing
@IntegralsForYou4 жыл бұрын
Hi! Be careful, in 1:28 I am derivating cos(x) and not integrating it 😉
@ТатьянаБелоусова-ь3и4 жыл бұрын
Здравствуйте, а откуда минус взялся?
@IntegralsForYou4 жыл бұрын
Hi! Since the derivative of cos(x) is -sin(x), we need a -sin(x) multiplying the dx. If you don't like this method maybe you will like this way: ... = Integral of (1-cos^2(x))cos^2(x)sin(x)dx = Substitution: u = cos(x) du = -sin(x)dx ==> -du = sin(x)dx = Integral of (1-u^2)(u^2)(-du) = = - Integral of (1-u^2)(u^2) du = = ... Hope it helped! ;-D
@johnsmith-hs8oi3 жыл бұрын
@@IntegralsForYou yes i understood this method better, just a suggestion but maybe you could talk through your working. Slow people like me would find it much easier to follow :)
@tiagossoliveira6 ай бұрын
thanks
@IntegralsForYou6 ай бұрын
My pleasure! ❤
@josueisai12322 жыл бұрын
Agradezco :3
@IntegralsForYou2 жыл бұрын
😊
@wexer826 жыл бұрын
Thank you
@IntegralsForYou6 жыл бұрын
;-D You're welcome, wexer82!
@juliajanecek46 жыл бұрын
oh my gosh thank you. had no idea what to do with the negative signs!!!
@IntegralsForYou6 жыл бұрын
Hi Julia Rose Janecek! There is another way to understand these negative signs when we do substitution: Integral of sin^3(x)cos^2(x) dx = = Integral of sin^2(x)cos^2(x) sin(x)dx = = Integral of (1-cos^2(x))cos^2(x)sin(x)dx = Substitution: u = cos(x) du = - sin(x)dx ==> -du = sin(x)dx = Integral of (1-u^2)(u^2)(-du) = = - Integral of (1-u^2)(u^2) du = = ..... Thanks for your comment! ;-D
@vihoang14997 жыл бұрын
Many tks !!
@IntegralsForYou7 жыл бұрын
You're welcome,Vi Hoàng! ;-D
@majidmotamedimehr69376 ай бұрын
❤❤❤
@IntegralsForYou6 ай бұрын
❤
@jackaitch61595 жыл бұрын
legend
@IntegralsForYou5 жыл бұрын
;-D
@brainandrie28745 жыл бұрын
Thanks, you solve my problem.
@IntegralsForYou5 жыл бұрын
You're welcome! ;-D
@tanujawankhede45007 жыл бұрын
sin ^3x .cos2x
@IntegralsForYou7 жыл бұрын
Hi Tanuja Wankhede! Here it is: cos(2x) = cos^2(x)-sin^2(x) Integral of sin^3(x)cos(2x) dx = = Integral sin^3(x)[cos^2(x)-sin^2(x)] dx = = Integral of [ sin^3(x)cos^2(x) - sin^5(x) ] dx = = Integral of sin^3(x)cos^2(x) dx - Integral of sin^5(x) dx = = kzbin.info/www/bejne/d6vJf519aN6Ci6s - kzbin.info/www/bejne/rZDCg6mpdrRkeLM dx = = -cos^3(x)/3 + cos^5(x)/5 - [ - cos(x) + 2cos^3(x)/3 - cos^5(x)/5 ] = = -cos^3(x)/3 + cos^5(x)/5 + cos(x) - 2cos^3(x)/3 + cos^5(x)/5 = = cos(x) - cos^3(x) + 2cos^5(x)/5 + C ;-D